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a b s t r a c t

The Gardner–Ostrovsky equation, also known as the extended rotation-modified
Korteweg–de Vries (KdV) equation, describes weakly nonlinear internal oceanic waves
under the influence of Earth’ rotation. High accuracy numerical methods are needed to
follow with precision the long time evolution of the solutions of this equation, with the
additional difficulty that the numerical methods have to conserve very accurately several
invariants of the solutions, including the mass and the energy of the waves. Finite-difference
methods traditionally used for the solution of the KdV equation fails to preserve accurately
these invariants for large times. In this paper we show that this difficulty can be overcome
by using a high accuracy finite-difference (HAFD) numerical method. We present a
strong-stability-preserving finite-difference scheme and compare its performance, using
some relevant examples, with those of two recently published numerical methods for solv-
ing this kind of equation: a simpler second order finite-difference method and a pseudo-
spectral numerical scheme that enforces the conservation of energy. The numerical
comparison shows that the three methods have similar accuracy for short times, but the
simpler finite-difference scheme is less accurate in preserving the three invariants, affect-
ing the numerical accuracy of the solution as time goes on. On the contrary, the HAFD
method presented here preserves the invariants with even better accuracy than the
pseudospectral scheme, but with a much lower computational cost. In addition, the numer-
ical implementation of the HAFD method is as easy as that of the simpler finite-difference
method, being both much simpler than the intricate energy conservation pseudospectral
scheme. These advantages makes the HAFD method presented here very appropriate for
solving numerically this type of equations, particularly for studying long time wave
propagation.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We compare in this paper several numerical methods for solving the so-called Gardner–Ostrovsky (GO) equation, which
in non-dimensional variables can be written as (see, e.g., [8,1,13])
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where a; a1; b and c are real non-dimensional parameters, under periodic boundary conditions of length L,
uðt; xÞ ¼ uðt; xþ LÞ; ð1:2Þ

and initial condition
uð0; xÞ ¼ u0ðxÞ: ð1:3Þ

Eq. (1.1) differs from the original Ostrovsky equation [14] in the additional cubic nonlinearity (a1 term), which becomes as
important as the quadratic (a) term in the propagation of weakly nonlinear internal waves in the ocean under some rela-
tively common circumstances (e.g., [8,1]). In turn, the Ostrovsky equation is a generalization of the well known Kor-
teweg–de Vries (KdV) equation to include the effects of Earth’s rotation on nonlinear dispersive internal waves in the
ocean [14,8]. When c ¼ 0, (1.1) represents the so-called Gardner’s equation (see, e.g., [8,11]), or extended KdV equation that
arose as a fundamental mathematical model for the description of weakly nonlinear dispersive waves in the situations when
the higher-order nonlinearity effects (cubic term) become important [10]. Although (1.1) and similar equations were first
derived in the context of the KdV equation to include different terms modeling additional physical effects relevant in the
propagation of weakly nonlinear internal waves, they also describe some other quite different phenomena such as mag-
neto-sonic waves in rotating plasma [12], waves in relaxing media [17], etc. (see, e.g., [7,6]).

We shall consider the general interval �L1 6 x 6 L2, with L1 þ L2 ¼ L, including the case in which L1 and L2 are very large
(infinity) to allow for soliton-like solutions. The problem has three first integrals, similar to those of the Ostrovsky equation
[3]:
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where H is the energy function or Hamiltonian, which is now given by
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with @�1
x the integral operator over x (see below). These first integrals of (1.1) and (1.2) correspond to the mass conservation

(zero mean of u), the conservation of the L2 norm of u, and the energy conservation, respectively.
Recently some conservative numerical schemes that takes into account these integrals properties (1.5) and (1.6) have

been proposed by Yaguchi et al. [18] for the Ostrovsky equation. These authors considered both standard finite-difference
and Fourier-pseudospectral schemes, showing that the energy conservative schemes perform better that the norm conser-
vative schemes, specially when using a pseudospectral method. On the other hand, a much simpler finite-difference method
has been recently proposed to solve the GO equation [13], but, as we shall show below, it does not preserve the above inte-
gral invariants as accurately as the energy conservative schemes, so that the precision of the solution worsens as time ad-
vances for the same spatial accuracy. The main aim of this paper is to show that a high accuracy finite-difference method,
particularly, a sixth-order scheme for the discretization of the spatial derivatives combined with a fourth-order Runge–Kutta
method for the time integration, is as accurate as the pseudospectral energy conservative scheme to preserve the integral
invariants, but with a much smaller computational cost, and being also much simpler to implement numerically. The details
of this numerical method are given in the next section. Section 3 compares the results obtained with the three numerical
methods in two quite different examples. Special attention is paid to the conservation in time of the integral quantities
(1.4)–(1.6) obtained by the different numerical methods. Finally, some conclusions are drawn in Section 4.

2. Numerical method

To integrate numerically Eq. (1.1), we first write it in the form
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where
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