
Symmetrization, convexity and applications

Allal Guessab a,⇑, Florian Guessab b

a Laboratoire de Mathématiques et de leurs Applications, UMR CNRS 4152, Université de Pau et des Pays de l’Adour, 64000 Pau, France
b 9, route de Cagnez, 64370 Arthez de Béarn, France

a r t i c l e i n f o

Keywords:
Barycentric coordinates
Convex functions
Convex polytopes
Hermite–Hadamard inequality
Symmetrization of functions
Wright functions

a b s t r a c t

Based on permutation enumeration of the symmetric group and ‘generalized’ barycentric
coordinates on arbitrary convex polytope, we develop a technique to obtain symmetrization
procedures for functions that provide a unified framework to derive new Hermite–
Hadamard type inequalities. We also present applications of our results to the Wright-
convex functions with special emphasis on their key role in convexity. In one dimension,
we obtain (up to a positive multiplicative constant) a method of symmetrization recently
introduced by Dragomir (2014) [3], and also by El Farissi et al. (2012/2013) [4]. So our
approach can be seen as a multivariate generalization of their method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Throughout X will always denote a convex polytope with a non-empty interior (that is, the convex hull of ðnþ 1Þ vertices
fv0;v1; . . . ;vng in Rd). The points v0;v1; . . . ;vn may be regarded as vectors in any linear vector space, which in this paper
will be taken to be Euclidean. We will refer to the vertex centroid of X or of VðXÞ :¼ fv ign

i¼0 as the average of the vertices
in VðXÞ. We define the notion of (generalized) barycentric coordinates in the remainder of this paper as follows: let x be
an arbitrary point of X. We call barycentric coordinates of x with respect to VðXÞ any set of real coefficients kiðxÞf gn

i¼0

depending on the vertices of X and on x such that all the three following properties hold true:

kiðxÞP 0; i ¼ 0; . . . ;n; ð1ÞXn

i¼0

kiðxÞ ¼ 1; ð2Þ

x ¼
Xn

i¼0

kiðxÞv i: ð3Þ

The generalized barycentric coordinates for an arbitrary convex polytope are a key notion in formulating our method for
symmetrization of functions. Recall that these coordinates exist for more general types of polytopes. The first result on their
existence was due to Kalman [8, Theorem 2]. Barycentric coordinates for simplices are uniquely determined, however they
can lose their uniqueness for general convex polytopes. One possible natural approach to constructing an interesting class of
particular barycentric coordinates would be to simply construct a triangulation of the polytope X – the convex hull of the
data set VðXÞ – into simplices such that the vertices v i of the triangulation coincide with VðXÞ. The fact that every convex
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polytope X can be triangulated using only the vertices of X is proven in the appendix of [2]. After that, one can use the stan-
dard barycentric coordinates for these simplices. (The above choice of coordinates is obviously immaterial, and it is only
meant to simplify computations throughout and to fix the notation). For more details, see for instance [1]. As a result, each
triangulation of VðXÞ generates a set of barycentric coordinates, that satisfy all the desirable properties (1)–(3). From now on,
we assume that fkign

i¼0 is generated by a triangulation of VðXÞ. In this situation, we list some other properties of these func-
tions of which the following are particularly relevant to us:

(1) They are well-defined, piecewise linear and nonnegative real-valued continuous functions.
(2) Since vertices of a convex polytope are extremal points, it is easily deduced from (3) that fkign

i¼0 satisfy the delta
property

kiðv jÞ ¼ dij; ði; j 2 0; . . . ; nf gÞ; ð4Þ

where we use Kronecker’s delta.

We refer to reference [6] for details.
This paper is organized as follows. In Section 2, we establish and analyze links between permutation enumeration of the

symmetric group and barycentric coordinates. In Section 3, we give our precise definition of symmetrization for any function
defined on an arbitrary convex polytope. We will show that this method of symmetrization has some desirable properties.
Under this method and the convexity assumption on the original function, our main result is that the resulting symmetrized
function satisfies some new Hermite–Hadamard type inequalities. In Section 4, we impose a convexity assumption on the
symmetrized function instead of the original function and present a refined version of our main results in this setting. Sec-
tion 5 develops, under some assumptions on the polytope, a weighted general version of our method of symmetrization. The
symmetrization techniques that we propose in this section are applicable to wide variety of domains, including simplices
and Cartesian hyperrectangles. Finally, in Section 6, we consider some applications to the class of Wright-convex functions
with special emphasis on their key role in convexity. In one dimension, we obtain (up to a positive multiplicative constant) a
method of symmetrization recently introduced by Dragomir [3] and also by El Farissi et al. [4]. Some discussion of this is in
Section 3. So our approach can be seen as a multivariate generalization of their method. This paper is motivated in part by
the results presented in [3,4].

2. Permutations and barycentric coordinates

In this section, we establish and analyze links between permutations and barycentric coordinates on arbitrary convex
polytopes. We will use them repeatedly in our further discussions.

We first start by presenting some basic notations and definitions. The set of all permutations on f0;1; . . . ;ng is denoted by
Sn. Recall that each permutation r 2 Sn is a 1-to-1 map:

r : f0; . . . ;ng ! f0; . . . ;ng;

so that frð0Þ; . . . ;rðnÞg is a re-arrangement of f0; . . . ;ng. There are ðnþ 1Þ! permutations in Sn, moreover, every permutation
r generates a mapping Tr : X! Rd, defined for all x in X by setting

TrðxÞ :¼ Tr
Xn

i¼0

kiðxÞv i

 !
¼
Xn

i¼0

kiðxÞvrðiÞ:

The reader may check that Tr is well-defined, continuous, and satisfies the property TrðXÞ � X, for any r of Sn. In fact, we
may say more about Tr. Let us start by the following observations, which show how X; TrðXÞ; VðXÞ and VðTrðXÞÞ are related
for any r 2 Sn. Here, for any polytope X, we have used the notation VðXÞ to denote the set of vertices of X.

Proposition 2.1. For any permutation r 2 Sn, the mapping Tr satisfies:

Trðv jÞ ¼ vrðjÞ; j ¼ 0; . . . ;n; ð5Þ
TrðXÞ ¼ X: ð6Þ

In particular, Tr sends vertices of X to vertices of TrðXÞ and the vertex centroid of X is also that of VðTrðXÞÞ :¼ fTrðv iÞgn
i¼0. That is

1
nþ 1

Xn

i¼0

v i ¼
1

nþ 1

Xn

i¼0

Trðv iÞ: ð7Þ

Proof. The first identity is simple to prove. It follows naturally from the Kronecker delta property of the barycentric coor-
dinates. Indeed, by definition for all j ¼ 0; . . . ;n, we have Trðv jÞ ¼

Pn
i¼0kiðv jÞvrðiÞ. Thus, the required equality follows imme-

diately from the fact that kiðv jÞ ¼ dij.

150 A. Guessab, F. Guessab / Applied Mathematics and Computation 240 (2014) 149–160



Download	English	Version:

https://daneshyari.com/en/article/4627396

Download	Persian	Version:

https://daneshyari.com/article/4627396

Daneshyari.com

https://daneshyari.com/en/article/4627396
https://daneshyari.com/article/4627396
https://daneshyari.com/

