EI SEVIER

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Completely monotonic functions and inequalities associated to some ratio of gamma function

Cristinel Mortici a,*, Valentin Gabriel Cristea b, Dawei Lu c

- ^a Valahia University of Târgovişte, Dept. of Mathematics, Bd. Unirii 18, 130082 Târgovişte, Romania
- ^b University Politehnica of Bucharest, Splaiul Independenței, 313, Bucharest, Romania
- ^c School of Mathematical Sciences, Dalian University of Technology, Linggong Str. No. 2, 116024 Dalian, China

ARTICLE INFO

ABSTRACT

Keywords:
Gamma function
Wallis ratio
Inequalities
Approximations
Asymptotic series
Complete monotonicity

Motivated by the work of Chen and Qi (2005) [3] we study the products $\prod_{k=1}^{n} \frac{3k-2}{3k}$ and $\prod_{k=1}^{n} \frac{3k-1}{3k}$. We prove that some functions associated to the previous products are completely monotonic and we establish some sharp inequalities.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Chen and Qi [3] presented the following inequalities for the Wallis ratio for every natural number n:

$$\frac{1}{\sqrt{\pi \big(n+\frac{4}{\pi}-1\big)}} \leqslant \frac{(2n-1)!!}{(2n)!!} < \frac{1}{\sqrt{\pi \big(n+\frac{1}{4}\big)}},$$

where the constants $\frac{4}{\pi}-1$ and $\frac{1}{4}$ are the best possible. This inequality is a consequence of the complete monotonicity on $(0,\infty)$ of the function

$$x \mapsto \ln \frac{x\Gamma(x)}{\sqrt{x + \frac{1}{4}\Gamma(x + \frac{1}{2})}}$$
.

Here Γ is the gamma function given by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \quad (x > 0).$$

In this paper we consider the following products for every integer $n \ge 1$:

$$P_1 = \frac{1 \cdot 4 \dots (3n-2)}{3 \cdot 6 \dots (3n)}, \quad P_2 = \frac{2 \cdot 5 \dots (3n-1)}{3 \cdot 6 \dots (3n)}.$$

E-mail addresses: cristinel.mortici@hotmail.com (C. Mortici), valentingabrielc@yahoo.com (V.G. Cristea), ludawei_dlut@163.com (D. Lu).

^{*} Corresponding author.

The following representations in terms of gamma function

$$P_1 = \frac{\Gamma\left(n + \frac{1}{3}\right)}{\Gamma(n+1)\Gamma\left(\frac{1}{2}\right)}, \quad P_2 = \frac{\Gamma\left(n + \frac{2}{3}\right)}{\Gamma(n+1)\Gamma\left(\frac{2}{2}\right)} \tag{1}$$

motivate us to define the functions

$$x\mapsto \ln\frac{\left(\frac{1}{2\pi}\sqrt{3}\Gamma\left(\frac{2}{3}\right)\right)^3}{x^2\left(\frac{\Gamma\left(x+\frac{1}{3}\right)}{\Gamma\left(x+1\right)\Gamma\left(\frac{1}{3}\right)}\right)^3}$$

and

$$x\mapsto -\ln\frac{x\left(\frac{\Gamma\left(x+\frac{2}{3}\right)}{\Gamma\left(x+1\right)\Gamma\left(\frac{2}{3}\right)}\right)^{3}}{\frac{1}{\Gamma^{3}\left(\frac{2}{3}\right)}}.$$

In fact, we prove that these functions are completely monotonic on $(0, \infty)$. As a result, some sharp inequalities on P_1 and P_2 are established.

These results are improved in the final section of this work.

2. Estimates via complete monotonicity theory

The digamma function $\psi:[0,\infty)\longrightarrow\mathbb{R}$ is defined by the formula

$$\psi(x) = \frac{d}{dx}(\ln \Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)},$$

while its derivatives ψ', ψ'', \ldots , are named polygamma functions. The following integral representations are of great help in this sections for every real number x > 0 and integer $n \ge 1$:

$$\psi^{(n)}(x) = (-1)^{n-1} \int_0^\infty \frac{t^n e^{-xt}}{1 - e^{-t}} dt \tag{2}$$

and

$$\frac{1}{x^n} = \frac{1}{(n-1)!} \int_0^\infty t^{n-1} e^{-xt} dt.$$
 (3)

See for details [1, p. 258].

Recall that a function s is completely monotonic on $(0,\infty)$ if it is indefinite derivable and $(-1)^n s^{(n)}(x) \ge 0$, for every real x > 0 and integer $n \ge 0$. A consequence of Hausdorff–Bernstein–Widder theorem (see [11]) states that a function s is completely monotonic on $(0,\infty)$ if and only if

$$s(x) = \int_0^\infty e^{-xt} \varphi(t) dt,$$

where φ is a non-negative function on $(0, \infty)$ such that the integral converges for all x > 0; see [11, p. 161]. Now we are in a position to give the following.

Theorem 1. Let

$$f(x) = \ln \frac{\left(\frac{1}{2\pi}\sqrt{3}\Gamma\left(\frac{2}{3}\right)\right)^3}{x^2 \left(\frac{\Gamma\left(x+\frac{1}{3}\right)}{\Gamma(x+1)\Gamma\left(\frac{1}{3}\right)}\right)^3}.$$

Then f is completely monotone on $(0, \infty)$.

Proof. We have

$$f(x) = 3\ln\left[\frac{1}{2\pi}\sqrt{3}\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)\right] - 2\ln x - 3\ln\Gamma\left(x + \frac{1}{3}\right) + 3\ln\Gamma(x + 1).$$

Download English Version:

https://daneshyari.com/en/article/4627398

Download Persian Version:

https://daneshyari.com/article/4627398

<u>Daneshyari.com</u>