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Keywords: Motivated by the work of Chen and Qi (2005) [3] we study the products []}_, 3’;—;2 and
Gamma function [Ti_: 342 We prove that some functions associated to the previous products are completely
Wallis ratio monotonic and we establish some sharp inequalities.
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1. Introduction

Chen and Qi [3] presented the following inequalities for the Wallis ratio for every natural number n:
1 < 2n-1)1 1

nn+4-1) S e T Jrm+l)

where the constants 2 — 1 and 1 are the best possible. This inequality is a consequence of the complete monotonicity on

(0, ) of the function
xI'(x)
x+10(x+1)
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Here I is the gamma function given by
I'(x) :/ t*le7tdt, (x> 0).
0

In this paper we consider the following products for every integer n > 1:

1-4..3n-2) 2.5..3n-1)

Pr= 3.6...(3n) ' P2 = 3.6...(3n)
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The following representations in terms of gamma function

. T(n+}) _ I'(n+3)
Pt ore P Ternrg (1)

motivate us to define the functions

(=v3re)’
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and

In fact, we prove that these functions are completely monotonic on (0, oo). As a result, some sharp inequalities on P; and
P, are established.
These results are improved in the final section of this work.

2. Estimates via complete monotonicity theory

The digamma function  : [0,00)—R is defined by the formula
. d T'(x)
Y(x) = - (InFXx) = T®)

while its derivatives ¢/, y", ..., are named polygamma functions. The following integral representations are of great help in
this sections for every real number x > 0 and integer n > 1:
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and
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See for details [1, p. 258].

Recall that a function s is completely monotonic on (0, co) if it is indefinite derivable and (—1)"s™(x) > 0, for every real
x> 0 and integer n > 0. A consequence of Hausdorff-Bernstein-Widder theorem (see [11]) states that a function s is com-
pletely monotonic on (0, o) if and only if

s(x) = A& e p(t)dt,

where ¢ is a non-negative function on (0, c0) such that the integral converges for all x > 0; see [11, p. 161].
Now we are in a position to give the following.

Theorem 1. Let

(=v3re)

Then f is completely monotone on (0, co).

fx)=1In

Proof. We have

f(x)=3In %ﬁr@)r@ﬂ —21nx—31n1"<x+%> +3InC(x+1).
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