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a b s t r a c t

Motivated by the work of Chen and Qi (2005) [3] we study the products
Qn

k¼1
3k�2

3k andQn
k¼1

3k�1
3k . We prove that some functions associated to the previous products are completely

monotonic and we establish some sharp inequalities.
� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Chen and Qi [3] presented the following inequalities for the Wallis ratio for every natural number n:
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where the constants 4
p� 1 and 1

4 are the best possible. This inequality is a consequence of the complete monotonicity on
0;1ð Þ of the function
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Here C is the gamma function given by

CðxÞ ¼
Z 1

0
tx�1e�tdt; x > 0ð Þ:

In this paper we consider the following products for every integer n P 1:

P1 ¼
1 � 4 . . . 3n� 2ð Þ

3 � 6 . . . ð3nÞ ; P2 ¼
2 � 5 . . . 3n� 1ð Þ

3 � 6 . . . ð3nÞ :
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The following representations in terms of gamma function
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motivate us to define the functions
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In fact, we prove that these functions are completely monotonic on 0;1ð Þ. As a result, some sharp inequalities on P1 and
P2 are established.

These results are improved in the final section of this work.

2. Estimates via complete monotonicity theory

The digamma function w : ½0;1Þ�!R is defined by the formula

wðxÞ ¼ d
dx

ln CðxÞð Þ ¼ C0ðxÞ
CðxÞ ;

while its derivatives w0;w00; . . ., are named polygamma functions. The following integral representations are of great help in
this sections for every real number x > 0 and integer n P 1:

wðnÞðxÞ ¼ ð�1Þn�1
Z 1
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1� e�t
dt ð2Þ

and

1
xn
¼ 1
ðn� 1Þ!
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0
tn�1e�xtdt: ð3Þ

See for details [1, p. 258].
Recall that a function s is completely monotonic on 0;1ð Þ if it is indefinite derivable and �1ð Þns nð Þ xð ÞP 0, for every real

x > 0 and integer n P 0. A consequence of Hausdorff–Bernstein–Widder theorem (see [11]) states that a function s is com-
pletely monotonic on ð0;1Þ if and only if

sðxÞ ¼
Z 1

0
e�xtuðtÞdt;

where u is a non-negative function on ð0;1Þ such that the integral converges for all x > 0; see [11, p. 161].
Now we are in a position to give the following.

Theorem 1. Let
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Then f is completely monotone on 0;1ð Þ.

Proof. We have
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þ 3 ln Cðxþ 1Þ:
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