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a b s t r a c t

Let Xn :¼ fxign
i¼0 be a given set of ðnþ 1Þ pairwise distinct points in Rd (called nodes or sam-

ple points), let P ¼ convðXnÞ, let f be a convex function with Lipschitz continuous gradient on
P and k :¼ fkign

i¼0 be a set of barycentric coordinates with respect to the point set Xn. We
analyze the error estimate between f and its barycentric approximation:

Bn½f �ðxÞ ¼
Xn

i¼0

kiðxÞf ðxiÞ; ðx 2 PÞ

and present the best possible pointwise error estimates of f. Additionally, we describe the
optimal barycentric coordinates that provide the best operator Bn for approximating f by
Bn½f �. We show that the set of (linear finite element) barycentric coordinates generated
by the Delaunay triangulation gives access to efficient algorithms for computing optimal
approximations. Finally, numerical examples are used to show the success of the method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction, motivation and theoretical justification

We begin by considering the one-dimensional case since its simplicity allows us to analyse all the necessary steps
through very simple computation. In the univariate approximation, say on an interval ½a; b�, a simple way of approximating
a given real function f : ½a; b� ! R is to choose a partition P :¼ fx0; x1; . . . ; xng of the interval ½a; b�, such that
a ¼ x0 < x1 < . . . < xn ¼ b, and then to fit to f using a spline Sn of degree 1 at these points in such a way that:

1. The domain of Sn is the interval ½a; b�;
2. Sn is a linear polynomial on each subinterval ½xi; xiþ1�;
3. Sn is continuous on ½a; b� and Sn interpolates the data, that is, SnðxiÞ ¼ f ðxiÞ; i ¼ 0; . . . ;n.

This is a convenient class of interpolants because every such interpolant can be written in a barycentric form

SnðxÞ ¼
Xn

i¼0

kiðxÞf ðxiÞ; ðx 2 ½a; b�Þ; ð1Þ
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where

kiðxÞ ¼

x�xi�1
xi�xi�1

; if xi�1 6 x 6 xi;

xiþ1�x
xiþ1�xi

; if xi 6 x 6 xiþ1;

0; for all other x:

8><
>:

Here, by a little abuse of notation, we set x�1 :¼ a and xnþ1 :¼ b. One of the main features of the usual linear spline approx-
imation, in its simplest form (1), is that fkign

i¼0 form a (unique) set of (continuous) barycentric coordinates. This means that
they satisfy, for all x 2 ½a; b�, three important properties:

kiðxÞP 0; i ¼ 0; . . . ;n;Xn

i¼0

kiðxÞ ¼ 1;

Xn

i¼0

kiðxÞxi ¼ x:

This simple approach can be generalized to general polytopes. Throughout, we will assume all of the polytopes we work with
are convex. Indeed, consider a given finite set of pairwise distinct points Xn ¼ fxign

i¼0 in P � Rd, with P ¼ convðXnÞ denoting
the convex hull of the point set Xn. We are interested in approximating an unknown scalar-valued continuous convex func-
tion f : P ! R from given function values f ðx0Þ; . . . ; f ðxnÞ sampled at Xn. In order to obtain a simple and stable global approx-
imation of f on P, we may consider a weighted average of the function values at data points of the following form:

Bn½f �ðxÞ ¼
Xn

i¼0

kiðxÞf ðxiÞ; ð2Þ

or, equivalently, a convex combination of the data values f ðx0Þ; . . . ; f ðxnÞ. This means that we require that the system of func-
tions k :¼ fkign

i¼0 forms a partition of unity, that is, for all x 2 P, we have

kiðxÞP 0; i ¼ 0; . . . ;n; ð3Þ

Xn

i¼0

kiðxÞ ¼ 1: ð4Þ

In addition, we shall also require the set of functions k to satisfy the first-order consistency condition:

x ¼
Xn

i¼0

kiðxÞxi; ð8x 2 PÞ: ð5Þ

We will call any set of functions ki : P ! R; i ¼ 0; . . . ;n, barycentric coordinates if they satisfy the three properties (3)–(5) for
all x 2 P. In view of these properties, we shall refer to the approximation schemes Bn as barycentric approximation
(schemes). Barycentric coordinates also exist for more general types of polytopes. The first result on their existence was
due to Kalman [15, Theorem 2]. It should be mentioned that one of the main difficulties in obtaining all barycentric approx-
imations of functions, in dimensions higher than one, lies in the fact that their construction still remains a very difficult task
in the general case. However, it should be emphasized, that as in the univariate case, one possible natural approach for con-
structing an interesting class of particular barycentric coordinates would be to simply construct a triangulation of the poly-
tope P – the convex hull of the data set Xn – into simplices such that the vertices v i of the triangulation coincide with xi. After
that, one can use the standard barycentric coordinates for these simplices. As a result, each triangulation of the data set Xn

generates a set of barycentric coordinates. Hence, there exists at least one barycentric approximation of type (2) which is
generated by a triangulation. Let us outline shortly how triangulations and barycentric approximations are connected. It
is known that every convex polytope can be triangulated into simplices, and the triangulation of a polytope may not be
unique. To better illustrate this phenomenon, let us consider the simple example of a two-dimensional square S. Then
two different triangulations are possible for S. Now every convex combination of the two associated coordinates provides
a set of barycentric coordinates. This allows us to generate new families of barycentric approximations which are not gen-
erated by a triangulation. We refer to reference [4] for details.

A difficulty in minimizing the error estimate using the barycentric approximations arises from the possible existence of
many barycentric coordinates. This yields the problem of selecting the barycentric coordinates as to minimize the approx-
imation error. It will be interesting to have a way of selecting favourable ones among all barycentric approximations asso-
ciated with the data set Xn.

Convex functions appear naturally in many disciplines of science such as physics, biology, medicine and economics, and
they constitute an important part of mathematics. A natural question is: can these functions be well approximated by sim-
pler functions and how?

While there are several papers investigating various methods to approximate arbitrary functions, very little research has
been done subject to the usual convexity. For instance, if some smoothness is allowed for the function f which is to be
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