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a b s t r a c t

A dynamic programming method is elaborated, enabling the characterization of trees with
a given number of pendent vertices, for which a vertex-degree-based invariant (‘‘topolog-
ical index’’) achieves its extremal value. The method is applied to the chemically interest-
ing and earlier much studied such invariants: the first and second Zagreb index, and the
atom–bond connectivity index.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

During recent decades, topological indices are being widely used in studies of quantitative structure–property relation
(QSPR) and quantitative structure–activity relations (QSAR) [1–5]. Numeric characteristics of graphs representing chemical
compounds appear to be good descriptors of various physical, chemical, and biological properties of diverse classes of
organic and inorganic substances. Nowadays, hundreds of topological indices have been developed [3,4], from the simplest
indices like the count of atoms in a molecule, to pretty complicated ones, e.g. those based on spectral properties of chemical
graphs and indices accounting for the heterogeneity of atoms and bonds in a molecule.

QSPR is recognized to be a promising strategy for rational design of materials. In many cases, design of a material with
prescribed requirements, can be formulated as an optimization problem – finding, within some class of chemical substances,
the species which maximizes or minimizes a certain topological index (or a composition of indices) and satisfying
constraints on some other topological indices or their compositions.

The present paper extends a toolkit of topological indices optimization by developing minimization routines for an
important class of the, so called, degree-based topological indices [6,7], over the set of acyclic graphs with the fixed number
of pendent vertices. In addition, we study index optimization over the set of chemical trees (i.e., trees with the vertex degree
limited by 4).

In Section 2 we propose a simple routine characterizing the set of trees that minimize a general first–Zagreb–like index
over the set of trees with fixed number of pendent vertices. Then we show how this routine works for the first Zagreb index
M1 and for the multiplicative second Zagreb index.

In Section 3 we employ dynamic programming to characterize the set of second Zagreb index (M2) minimizers over the
set of all trees with a fixed number of pendent vertices. We also determine the set of atom–bond connectivity (ABC) index
minimizers over the set of chemical trees with a fixed number of pendent vertices. The same line of reasoning can, in
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principle, be applied to any second–Zagreb–like index. In Section 4 we discuss the limitations of such an approach, using the
ABC index as an example.

2. First–Zagreb–like indices

Let G be a simple connected undirected graph with vertex set VðGÞ and edge set EðGÞ. Denote by dGðvÞ the degree of a
vertex v 2 VðGÞ in the graph G, i.e., the number of vertices being adjacent to v. The vertex v 2 VðGÞ is said to be pendent
if dGðvÞ ¼ 1. All other vertices of the graph G are referred to as non-pendent. By WðGÞwe denote the set of all pendent vertices
of a graph G, and by MðGÞ ¼ VðGÞ nWðGÞ the set of all its non-pendent vertices.

Definition 1. The generalized first Zagreb index is

C1ðGÞ :¼
X

v2VðGÞ
cðdGðvÞÞ

where cðdÞ is a non-negative function defined for d 2 N, and cð2Þ > 0.

Recall that the choice cðdÞ ¼ d2 yields the ‘‘classical’’ first Zagreb index M1, whose theory is nowadays well elaborated; see
the surveys [7–9] and the recent papers [10–12]. The choices cðdÞ ¼ ln d and cðdÞ ¼ d ln d give the logarithms of the Narumi–
Katayama and second multiplicative Zagreb indices; for details see [13,14] and [15,16], respectively.

A tree is a connected graph with N vertices and N � 1 edges. Let T ðnÞ be the set of all trees with n P 2 pendent vertices,
and define T �ðnÞ :¼ ArgminT2T ðnÞC1ðTÞ, the set of all C1-minimizers in T ðnÞ. In what follows we characterize T �ðnÞ.

A tree in which all non-pendent vertices have degree d will be called a d-tree.

Lemma 1. If T 2 T �ðnÞ, then dTðvÞ – 2 for all v 2 VðGÞ.

Proof. Assume the opposite, i.e., that dTðvÞ ¼ 2. Thus, v would have exactly two neighbors (say, u1 and u2) in T. Construct a
tree T 0 by deleting the vertex v and its incident edges and by adding an edge u1u2 instead. We see that T 0 2 T ðnÞ, as T 0 is a tree
with exactly n pendent vertices. Since cð2Þ > 0, C1ðT 0Þ ¼ C1ðTÞ � cð2Þ < C1ðTÞ, and T cannot be optimal. This contradiction
completes the proof. h

It is known that for an arbitrary tree T 2 T ðnÞX
m2MðTÞ

½dTðmÞ � 2� ¼ n� 2 ð1Þ

and, vice versa, for each integer q P 1 and a sequence d1; . . . ; dq; di P 2; i ¼ 1; . . . ; q, such that
Pq

i¼1ðdi � 2Þ ¼ n� 2, there
exists a tree with n pendent vertices and q non-pendent vertices of degrees d1; . . . ; dq.

Lemma 2. If T 2 T �ðnÞ, then jMðTÞj 6 n� 2, with equality if T is a 3-tree.

Proof. From Lemma 1, dTðmÞ � 2 P 1 for all m 2 MðTÞ, and, thus, the left side of (1) is not less than jMðTÞj. Therefore,
jMðTÞj 6 n� 2, and the equality holds when dTðmÞ � 2 ¼ 1 for all m 2 MðTÞ, i.e., if T is a 3-tree. h

For any n P 3, there exists at least one 3-tree.
Consider the following integer program:

C�1 ¼ ncð1Þ þ min
q¼1;...;n�2

min
d1 ;...;dq

Xq

i¼1

cðdiÞ : di 2 N; di P 3;
Xq

i¼1

di ¼ 2qþ n� 2

( )
: ð2Þ

Let PðnÞ be the set of vectors ðq; d1; . . . ; dqÞ delivering the minimum in (2). For n P 3 and each tree T 2 T �ðnÞwith q non-pen-
dent vertices of degrees d1; . . . ; dq, the vector ðq; d1; . . . ; dqÞ belongs to PðnÞ. Vice versa, each ðq; d1; . . . ; dqÞ 2 PðnÞ gives rise to
the set of all trees T ðnÞ with q non-pendent vertices having degree sequence d1; . . . ; dq. All these trees minimize C1ð�Þ and,
thus, belong to T ðnÞ. So, the problem of enumerating trees from T ðnÞ is reduced to characterizing the vectors from PðnÞ.

Below we first find all optimal vertex degrees d1; . . . ; dq, provided the number of vertices q is given (see Lemma 3 below).
Then we find the optimal number of vertices q (see Theorem 1 below).

Define

C�1ðqÞ ¼ ncð1Þ þ min
d1 ;...;dq

Xq

i¼1

cðdiÞ : di 2 N; di P 3;
Xq

i¼1

di ¼ 2qþ n� 2

( )
: ð3Þ

This expression gives a part of integer program (2): C�1 ¼minq¼1;...;n�2C�1ðqÞ.
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