
Victim retention for reducing cache misses in tiled chip multiprocessors

Shirshendu Das ⇑, Hemangee K. Kapoor
Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India

a r t i c l e i n f o

Article history:
Available online 13 November 2013

Keywords:
Chip-multiprocessor
Victim retention
NUCA

a b s t r a c t

This paper presents CMP-VR (Chip-Multiprocessor with Victim Retention), an approach to improve cache
performance by reducing the number of off-chip memory accesses. The objective of this approach is to
retain the chosen victim cache blocks on the chip for the longest possible time. It may be possible that
some sets of the CMPs last level cache (LLC) are heavily used, while certain others are not. In CMP-VR,
some number of ways from every set are used as reserved storage. It allows a victim block from a heavily
used set to be stored into the reserve space of another set. In this way the load of heavily used sets are
distributed among the underused sets. This logically increases the associativity of the heavily used sets
without increasing the actual associativity and size of the cache. Experimental evaluation using full-sys-
tem simulation shows that CMP-VR has less off-chip miss-rate as compared to baseline Tiled CMP.
Results are presented for different cache sizes and associativity for CMP-VR and baseline configuration.
The best improvements obtained are 45.5% and 14% in terms of miss rate and cycles per instruction
(CPI) respectively for a 4 MB, 4-way set associative LLC. Reduction in CPI and miss rate together guaran-
tees performance improvement.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Advancement in semiconductor technology is allowing to pack
more and more transistors on a single die, thus increasing the com-
plexity of the systems. Physical limitations such as heat dissipation
and data synchronization tend to create an upper bound on the
CPU performance. To improve CPU utilization the alternative gen-
erally used is instruction level parallelism, like pipelining. Many
applications are better suited for thread level parallelism which
is the major impetus behind multiprocessors systems, where each
core can handle one thread at any moment of time. Chip Multipro-
cessors (CMPs) that contain multiple CPUs on the same die are the
main components for building today’s computer systems [1]. Sev-
eral CMP based architectures [2–4] have already found their way
into the commercial market. In the long run, it is expected that
the number of cores in CMPs will increase and also accommodate
large on-chip last level cache (LLC) [5].

CMP cache architectures are mainly of two types [1]: (i) CMP
with a private LLC and (ii) CMP with a shared LLC. In this paper
L2 cache is considered to be the LLC. Both types of architectures
have separate L1 cache for data/instructions with each core, but
they differ in the physical placement of the LLC (L2). Private L2
caches are relatively small and placed physically very near to the
core, thus having the faster cache access. However as the cache

size is small, it causes several capacity misses. Multiple copies of
the same data block may be present in separate L2 caches, leading
to maintain L2 level coherence. On the other hand, shared L2 is
comparatively larger and only a single copy of each data block
can be stored in it. All the requesting cores share the same data
block and the cache storage can be dynamically allocated to the
cores depending on their workloads. Shared LLC increases hit
time,1 due to a much larger cache size compared to the private
LLC. Since both private and shared LLC have some advantages and
some disadvantages, there exists research [7–9] combining the
advantages of both.

Most of the cache addressing techniques map a particular block
to a fixed set. This set may be distributed over multiple banks as in
the case of D-NUCA [10] (Dynamic Non-Uniform Cache Access), but
the block is always placed within the same set. Even if the block
migrates from one bank to another it remains within the same
set. There are some exceptions like NuRAPID [11] where data can
be placed in any set, but NuRAPID also uses the same concept of
NUCA for its tag array. The mapping occurs based on the set-index
of the block address. Now, if in some kind of applications, a group
of blocks are being used continuously, and they all map to the
same set, then it may be possible that such sets become heavily
used while certain others are not. Most of the CMP-cache architec-
tures use basic replacement policies like LRU or Pseudo-LRU [1].
But these replacement policies manage each cache set separately.

0141-9331/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2013.11.005

⇑ Corresponding author.
E-mail addresses: shirshendu@iitg.ernet.in (S. Das), hemangee@iitg.ernet.in

(H.K. Kapoor).

1 Hit time is the time required to access a block if the requested block is contained
in the cache [6].

Microprocessors and Microsystems 38 (2014) 263–275

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2013.11.005&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2013.11.005
mailto:shirshendu@iitg.ernet.in
mailto:hemangee@iitg.ernet.in
http://dx.doi.org/10.1016/j.micpro.2013.11.005
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


So the heavily used sets need to perform large number of replace-
ments in order to allocate newly requested blocks. On the other-
hand, some other sets may remain idle. We propose a cache man-
agement technique CMP-VR to handle such situations.

In LRU when a set is full and a new block request arrives, one
block from the set (victim block) is selected to be replaced with
the newly requested block. Now, for a heavily used set, this victim
block may be required again in near future. Hence, CMP-VR gives
the victim block another chance to remain in the cache; by moving
the victim block into a special region of the cache called reserve
storage (ResS). In each cache bank, some number of ways (25–
50%) from every set are reserved for ResS. The remaining cache
storage is called regular storage (RegS). CMP-VR allows a victim
block from a heavily used set to be stored into the reserve space
of another set. In this way the load of heavily used sets can be dis-
tributed among the underused/idle sets. On a cache miss in RegS,
the block is searched in ResS. If the block is found in ResS then it
is migrated into RegS and considered as a cache hit; otherwise, a
cache miss occurs. A separate tag-array is used to manage (search-
ing, replacement, allocation, etc.) the ResS. In the worst case (when
all sets are equally used) the technique performs same as basic LRU
without ResS, but never less than that.

The mechanism is implemented separately for each LLC bank
and it is completely transparent from outside the bank. In this pa-
per CMP-VR is only implemented for SNUCA (static NUCA) based
shared LLC, but it can also be implemented for any other type of
NUCA designs (considering both private and shared LLC). Also,
other inter-bank data management policies like co-operative cach-
ing [8] and victim-replication [7] can be implemented on top of
CMP-VR.

The rest of the paper is organized as follows. The next section
presents the related works in CMP cache architectures and cache
management policies. Motivation behind the proposed technique
is presented in Section 3. Section 4 describes the proposed cache
management technique (CMP-VR). Experimental details are given
in Section 5. Concluding remarks are given in Section 6.

2. Related work

Recent chip multiprocessors (CMPs) use low-radix (2D-mesh)
network of interconnected tiles. Each tile can be composed of a sin-
gle processor or a set of few processors. The tiles usually have their
private L1 cache. Each tile may have a private L2 cache or alterna-
tively, all the tiles may share a global L2 cache. The global L2 cache
is logically a monolithic block, but due to physical constraints it is
efficient to divide this L2 into banks and place each bank at a sep-
arate location. The banks of L2 are shared by all the tiles/proces-
sors. Each bank maintains its own directory to store coherence
information. Another variant is to store all the directory informa-
tion in one centralized directory. In a shared-banked L2 cache, a
L1 cache miss is mapped to exactly one bank depending on the ad-
dress of the data block. As the requesting L1 may be located far
from the serving L2 bank, this can lead to varying access times
for the same memory block. However, in this style the total size
of L2 available to all the tiles is very large.

Many cache management policies have been proposed in the re-
cent years trying to balance the factors: latency and cache capacity.
In [12], they divided 16 tiles into four groups where each group
contains four tiles with four L2 banks. The four L2 banks are in
shared scheme and the distributed directories control the cache
coherence through query messages. This reduces the access latency
as the L2 is nearby in the cluster.

In [13–15] the evicted L1 cache blocks are removed and stored
in the L2 bank of the same tile; these blocks are called replicas. In
this hybrid scheme, the replica is accessible to its own processor

and not the nearby cores; such cores have to access it via the global
L2 bank, which may be far away.

In [16] the L2 banks are private to start with but become shared
due to spilling of data. The evicted L2 cache blocks are spilled onto
a neighboring L2 bank increasing the lifetime of the cache block;
however this does not scale as the number of processors increases
and has the overhead of cache coherence engine.

In cluster based approach of [17–19], the processors are divided
into clusters where each cluster has an L2 cache bank and a direc-
tory to maintain the information about the cluster. Another direc-
tory sits near the shared main memory to maintain information
about all the clusters.

In [9], the number of L2 banks a processor can access varies
dynamically and known as its own cache dimension. A mapping
function is used at each L1 for sending query messages to the L2
cache. If the block is not in the L2 cache of the current cache
dimension, the directory is contacted since other processors might
have already loaded the data. This increases the number of shared
data copies on the chip and thus decreases the overall cache capac-
ity. Also, even if a neighboring L1 has the block, the requester has
to wait for the directory to respond (which increases the access
latency).

In CMP, each core can run different applications and hence it is
beneficial to partition the LLC among the cores [1]. Dynamic parti-
tioning of LLC based on the applications requirement is also an
important factor [20]. Several approaches for LLC partitioning have
already been proposed [21–23]. Some recent proposals for improv-
ing the performance of LLC are [24–26].

Replacement policies have been well-studied in the past
[27,28], but the emergence of large shared LLCs has led to innova-
tions in this area. It is generally believed that some variations of
LRU policy are best at retaining relevant blocks in the cache. Many
alternative innovations for replacement policy has also been pro-
posed [28–30]. Hybrid architectures use replacement policies to al-
low victim blocks to remain on the chip for as long as possible.
They spill the victim block into a separate tile but not within the
same tile. So an access to the spilled block causes longer hit latency
as it has to search other tile to get the block. CMP-VR allows the
victim block to remain in the same tile (same L2 bank), which re-
duces the access time for further requests to the victim block.

The non-uniform usage of cache sets is a major cause for higher
conflict misses [31]. Way sharing cache [32], allows a pair of sets to
share some common ways between them such that the load of one
set can be shared with the other one. Both [31,33] solve this issue
by dynamically increasing the associativity of the heavily used sets
without increasing the cache size. In [31], the associativity is in-
creased by increasing the number of tag-store entries relative to
the number of data lines. For example, with twice the tag-store en-
tries as data lines the associativity of a heavily used set can be dou-
bled. CMP-VR is also based on a similar concept but uses a different
technique (as discussed in Section 1).

2.1. Tiled chip multiprocessor

The baseline design of this work is a Tiled chip multiprocessor
(TLA) [1] as shown in Fig. 1. TLA can scale well as the number of
processors increase. Each tile has a processor, a private L1 cache
and an L2 cache. The tiles (or processor nodes) are connected to
each other over a 2D mesh popularly known as network-on-chip
(NoC). The L2 cache with each tile can be private, or shared among
all the processors on the chip. This paper assumes a shared cache,
where the slice located in each tile is called a cache-bank. The
cache-bank within which a block resides can be identified by
applying a hash function on the block address. This cache-bank is
called the home-tile for the given address (or its associated cache
block). Thus, every address maps to exactly one home-tile and

264 S. Das, H.K. Kapoor / Microprocessors and Microsystems 38 (2014) 263–275



Download English Version:

https://daneshyari.com/en/article/462742

Download Persian Version:

https://daneshyari.com/article/462742

Daneshyari.com

https://daneshyari.com/en/article/462742
https://daneshyari.com/article/462742
https://daneshyari.com

