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In this paper, we consider a generalization of parameterized block triangular precondition-
ers for the generalized saddle point problems. The eigenvalue bounds for the precondi-
tioned matrices are derived. Theoretical analysis shows that it slightly improves the
existing results in the literature. Numerical experiments are given to show the efficiency
of the GMRES with the generalized block triangular preconditioners.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider the generalized saddle point problem
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where A 2 Rn�n is symmetric positive definite, B 2 Rm�nðm 6 nÞ is of full row rank, and C 2 Rm�m is symmetric positive semi-
definite, and f 2 Rn and g 2 Rm are two column vectors. It is known that the linear system (1.1) arises in computational sci-
ence and engineering applications, including computational fluid dynamics, constrained optimization, parameter
identification, mixed finite element approximation of elliptic PDEs, and others [5,10,14,16,21]. Due to the coefficient matrix
A is often large and sparse, iteration methods are more attractive than direct methods for solving system (1.1), see the
detailed survey by Benzi et al. [5]. In the passed decades, as a classical iteration algorithm, Krylov subspace method has been
widely applied, together with various preconditioners such as block diagonal preconditioners [11,17,18,21], block triangular
preconditioners [6–8,12,22,26,27,29,30], constraint preconditioners [3,13,25], HSS preconditioners [1,2,4], matrix splitting
preconditioners [23] and so on.

Recently, Simoncini [22] considered the indefinite block triangular preconditioner P ¼ Â BT

O �Ĉ

� �
, together with a Krylov

subspace iterative solver for (1.1). Here Â 2 Rn�n and Ĉ 2 Rm�m are symmetric positive definite. Cao proposed in [6] the posi-

tive block triangular preconditioner G ¼ Â BT

O Ĉ

� �
. The detailed eigenvalue analyses for AP�1 and AG�1 were shown in [22,6],

respectively, and numerical results illustrated that both the block triangular preconditioners P and G are more efficient than
the following block diagonal preconditioners [11,18]
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Some improved estimates for AP�1 and AG�1 were presented in [8,15]. Motivated by the idea that the convergence of the
iteration methods such as GMRES may be improved by introducing x to the block triangular preconditioners, Jiang et al.
[12] studied two parameterized block triangular preconditioners

P� ¼
Â xBT

O �Ĉ

" #
and Pþ ¼

Â xBT

O Ĉ

" #
:

It was proved that the preconditioned matrices AP�1
� and AP�1

þ have similar properties as AP�1 and AG�1.
In this paper, we are interested in the generalized block triangular preconditioners

P ¼ Â xBT

O jĈ

" #
; ð1:2Þ

where x P 0 and j is a nonzero real parameter. When j ¼ �1 and j ¼ 1, the block triangular matrices P reduce to P� and Pþ,
respectively. Particularly, the matrix P reduces to the block diagonal preconditioner denoted by

D ¼ Â O

O jĈ

" #
; ð1:3Þ

when x ¼ 0. For clarity, we use P1 and P2 to denote the preconditioner P when j is positive or negative, respectively. We will
give the eigenvalue analysis of the preconditioned matrices AP�1

1 and AP�1
2 . Similar to [6], we will illustrate that all the eigen-

values of the preconditioned matrix AP�1
1 are real, and present a valid estimate on the bounds for the eigenvalues of AP�1

1 .
Theoretical analysis given in this paper shows that the derived bounds are very tight, and superior to the existing results in
[6,12,15]. Similarly, the upper and lower bounds on the real part of the eigenvalues of the preconditioned matrix AP�1

2 are
derived, which also improve the theoretical results in [12,28]. In particular, we will provide the bounds on the real and imag-
inary parts of all the complex eigenvalues of AP�1

2 , which generalize the results in [28,30]. Numerical experiments associated
with Stokes problem are presented to confirm the theoretical analysis, and illustrate the efficiency of the GMRES [20] with
the generalized block triangular preconditioners.

Notation. We denote by kxk ¼
ffiffiffiffiffiffiffi
xT x
p

the Euclidean norm of a vector x, and diag ðK1;K2Þ the block diagonal matrix with
diagonal matrices K1 and K2. For an eigenvalue l, we use RðlÞ and IðlÞ to denote its real and imaginary parts, respectively.

2. Eigenvalue analysis of the preconditioned matrix AP�1

We consider the eigenvalue problem
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It can be equivalently represented as the generalized eigenvalue problem
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v̂

� �
, then (2.1) can be rewritten as
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2AÂ�

1
2 1

ffiffiffiffi
jjj

p �1
2BT C�

1
2

1ffiffiffi
jjj
p Ĉ�
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2CĈ�
1
2

2
64

3
75;

D̂�1PD̂�1 ¼
I xffiffiffi

jjj
p Â�
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