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a b s t r a c t

We present a local convergence analysis of the proximal Gauss–Newton method for solving
penalized nonlinear least squares problems in a Hilbert space setting. Using more precise
majorant conditions than in earlier studies such as (Allende and Gonçalves) [1], (Ferreira
et al., 2011) [9] and a combination of a majorant and a center majorant function, we pro-
vide: a larger radius of convergence; tighter error estimates on the distances involved and a
clearer relationship between the majorant function and the associated least squares prob-
lem. Moreover, these advantages are obtained under the same computational cost as in
earlier studies using only the majorant function.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let X and Y be Hilbert spaces. Let D#X be open set and F : D�!Y be continuously Fréchet-differentiable. Moreover, let
J : D ! R [ f1g be proper, convex and lower semicontinuous. In this study we are concerned with the problem of approx-
imating a locally unique solution xH of the penalized nonlinear least squares problem

minx 2 DkFðxÞk2 þ JðxÞ: ð1:1Þ

A solution xH 2 D of (1.1) is also called a least squares solution of the equation FðxÞ ¼ 0.
Many problems from computational sciences and other disciplines can be brought in a form similar to Eq. (1.1) using

Mathematical Modelling [3,6,14,16]. For example in data fitting, we have X ¼ Ri;Y ¼ Rj; i is the number of parameters
and j is the number of observations.

The solution of (1.1) can rarely be found in closed form. That is why the solution methods for these equations are usually
iterative. In particular, the practice of numerical analysis for finding such solutions is essentially connected to Newton-type
methods [1–3,5,4,6,7,14,17]. The study about convergence matter of iterative procedures is usually centered on two types:
semilocal and local convergence analysis. The semilocal convergence matter is, based on the information around an initial
point, to give criteria ensuring the convergence of iterative procedures; while the local one is, based on the information
around a solution, to find estimates of the radii of convergence balls. A plethora of sufficient conditions for the local as well
as the semilocal convergence of Newton-type methods as well as an error analysis for such methods can be found in
[1–7,9,11–20].
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If J ¼ 0, we obtain the well known Gauss–Newton method defined by

xnþ1 ¼ xn � F 0ðxnÞþFðxnÞ; for each n ¼ 0;1;2; . . . ; ð1:2Þ

where x0 2 D is an initial point [12] and F 0ðxnÞþ is the Moore–Penrose inverse of the linear operator F 0ðxnÞ. In the present
paper we use the proximal Gauss–Newton method (to be precised in Section 2, see (2.6)) for solving penalized nonlinear
least squares problem (1.1). Notice that if J ¼ 0; xH is a solution of (1.1), FðxHÞ ¼ 0 and F 0ðxHÞ is invertible, then the theories
of Gauss–Newton methods merge into those of Newton method. A survey of convergence results under various Lipschitz-
type conditions for Gauss–Newton-type methods can be found in [2,6] (see also [5,9,10,12,15,18]). The convergence of these
methods requires among other hypotheses that F 0 satisfies a Lipschitz condition or F 00 is bounded in D. Several authors have
relaxed these hypotheses [4,8–10,15]. In particular, Allende and Gonçalves [1] and Ferreira et al. [9,10] have used the majo-
rant condition in the local as well as semilocal convergence of Newton-type method. Argyros and Hilout [3–7] have also used
the majorant condition to provide a tighter convergence analysis and weaker convergence criteria for Newton-type method.
The local convergence of inexact Gauss–Newton method was examined by Ferreira et al. [9] using the majorant condition. It
was shown that this condition is better that Wang’s condition [15,20] in some sence. A certain relationship between the
majorant function and operator F was established that unifies two previously unrelated results pertaining to inexact
Gauss–Newton methods, which are the result for analytical functions and the one for operators with Lipschitz derivative.

In [7] motivated by the elegant work in [10] and optimization considerations we presented a new local convergence anal-
ysis for inexact Gauss–Newton-like methods by using a majorant and center majorant function (which is a special case of the
majorant function) instead of just a majorant function with the following advantages: larger radius of convergence; tighter
error estimates on the distances kxn � xHk for each n ¼ 0;1; � � � and a clearer relationship between the majorant function and
the associated least squares problems (1.1). Moreover, these advantages are obtained under the same computational cost,
since as we will see in Section 3 and Section 4, the computation of the majorant function requires the computation of the
center-majorant function. Furthermore, these advantages are very important in computational mathematics, since we have
a wider choice of initial guesses x0 and fewer computations to obtain a desired error tolerance on the distances kxn � xHk for
each n ¼ 0;1; � � �. In the present paper, we obtain the same advantages over the work by Allende and Gonçalves [1] but using
the proximal Gauss–Newton method [6,18].

The paper is organized as follows. In order to make the paper as self contained as possible, we provide the necessary back-
ground in Section 2. Section 3 contains the local convergence analysis of inexact Gauss–Newton-like methods. Some proofs
are abbreviated to avoid repetitions with the corresponding ones in [18]. Special cases and applications are given in the
concluding Section 4.

2. Background

Let Uðx; rÞ and Uðx; rÞ stand, respectively, for the open and closed ball in X with center x 2 D and radius r > 0. Let
A : X�!Y be continuous linear and injective with closed image, the Moore–Penrose inverse [3] Aþ : Y�!X is defined by
Aþ ¼ ðAHAÞ�1

AH. I denotes the identity operator on X (or Y). Let LðX ;YÞ be the space of bounded linear operators from X
into Y. Let M 2 LðX ;YÞ, the KerðMÞ and ImðMÞ denote the Kernel and image of M, respectively and M� its adjoint operator.
Let M 2 LðX ;YÞ with a closed image. Recall that the Moore–Pentose inverse of M is the linear operator Mþ 2 LðY;XÞ which
satisfies

M MþM ¼ M; MþM Mþ ¼ M; ðM MþÞ� ¼ M Mþ; ðMþMÞ� ¼ MþM: ð2:1Þ

It follows from (2.1) that if
Q

S denotes the projection of X onto subspace S, then

MþM ¼ IX �
Y

KerðMÞ
; M Mþ ¼

Y
ImðMÞ

: ð2:2Þ

Moreover, if M is injective, then

Mþ ¼ ðM�MÞ�1 M�; MþM ¼ IX ; kMþk2 ¼ kðM�MÞ�1k: ð2:3Þ

Lemma 2.1 ([3,6,14] Banach’s Lemma). Let A : X�!X be a continuous linear operator. If kA� Ik < 1 then A�1 2 LðX ;XÞ and
kA�1k 6 1=ð1� kA� IkÞ.

Lemma 2.2 ([1,3,6,10]). Let A; E : X�!Y be two continuous linear operators with closed images. Suppose B ¼ Aþ E;A is injective
and kEAþk < 1. Then, B is injective.

Lemma 2.3 ([1,3,6,10]). Let A; E : X�!Y be two continuous linear operators with closed images. Suppose B ¼ Aþ E and
kAþkkEk < 1. Then, the following estimates hold
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