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a b s t r a c t

Fast algorithms for solving symmetric penta-diagonal Toeplitz linear systems have been
proposed in McNally (2010) [7], Nemani (2010) [8] and Xu (2010) [11]. In this paper, we
discuss the general nonsymmetric problem and propose an algorithm for solving nonsym-
metric penta-diagonal Toeplitz linear systems. Numerical examples are given to illustrate
the efficiency of our algorithm.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the solution of the following n-by-n nonsingular, nonsymmetric penta-diagonal Toeplitz linear systems

Ax ¼ f ; ð1Þ

where the coefficient matrix A is defined as
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and a; b; c; d; e 2 R. When matrix A is symmetric, fast algorithms have been presented in [7,8,11]. In this paper, we generalize
these algorithms and propose an algorithm for solving the nonsymmetric penta-diagonal Toeplitz linear systems. For general
nonsymmetric penta-diagonal linear systems, but not Toeplitz, algorithms have been proposed in [2,5]. For related works
such as computing the inverse and determinant of penta-diagonal matrices, see e.g. [1,3,4,10,12] and references therein.
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The paper is organized as follows. In Section 2, we propose an algorithm for solving the penta-diagonal Toeplitz linear
systems (1) and discuss its stability. In Section 3, we present some numerical experiments. Finally, we draw some conclu-
sions in Section 4.

2. An algorithm for penta-diagonal Toeplitz linear systems

In this section, we first give a decomposition of the penta-diagonal Toeplitz matrix that is different from the LU factor-
ization, then we can compute its inverse by the Sherman–Morrison–Woodbury formula. After determining unknown param-
eters in the matrix decomposition, we propose an algorithm for solving penta-diagonal Toeplitz linear systems. Meanwhile,
we also briefly discuss the stability of the proposed algorithm.

2.1. Inverse of the penta-diagonal Toeplitz matrix and parameter determination

In general, we can solve the penta-diagonal Toeplitz linear systems (1) by the LU decomposition (assuming without piv-
oting). Let A ¼ ~L~U. Since A is penta-diagonal, the lower and upper triangular matrices ~L; ~U can be represented as

~L ¼

1
l2;1 1
l3;1 l3;2 1
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; ~U ¼
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respectively. For this LU decomposition, 4n� 4 values of li;j; ui;j should be determined. In this case we note that the structure
of the Toeplitz matrix A has not been considered. If the Toeplitz structure is taken into account, it is to be hoped that there is
some other decomposition of A which can be used to solve the linear systems (1) much more effectively.

Let l1; l2;u1;u2 2 C and denote the unit lower triangular matrix L and upper triangular matrix U as follows

L ¼
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l2 l1 1
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and U ¼
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The product of L and U can be easily computed as follows

L � U ¼

1 u1 u2

l1 1þ l1u1 b̂ . .
.
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where â ¼ 1þ l1u1 þ l2u2; b̂ ¼ l1u2 þ u1 and d̂ ¼ l2u1 þ l1.
We see that the product of L � U is almost a Toeplitz matrix except the upper-left 2-by-2 sub-matrix

1 u1

l2 1þ l1u1

� �
:

In order to obtain a Toeplitz matrix, we just need to change the upper-left 2-by-2 sub-matrix by adding the following matrix

l1u1 þ l2u2 l1u2

l2u1 l2u2

� �
:

Let e1 and e2 be the first two column vectors of the identity matrix In�n. From discussions above, we can obtain a penta-diag-
onal Toeplitz matrix Â as

Â ¼ L � U þ ½e1; e2�
l1u1 þ l2u2 l1u2

l2u1 l2u2

� �
eT
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eT
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" #
: ð2Þ
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