FISFVIFR

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

An algorithm for solving nonsymmetric penta-diagonal Toeplitz linear systems

Lei Du a,*, Tomohiro Sogabe b, Shao-Liang Zhang c

- ^a School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
- ^b Graduate School of Information Science and Technology, Aichi Prefectural University, Aichi-gun, Aichi 480-1198, Japan
- ^c Department of Computational Science and Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan

ARTICLE INFO

Keywords: Toeplitz matrix Penta-diagonal matrix Nonsymmetric linear systems

ABSTRACT

Fast algorithms for solving symmetric penta-diagonal Toeplitz linear systems have been proposed in McNally (2010) [7], Nemani (2010) [8] and Xu (2010) [11]. In this paper, we discuss the general nonsymmetric problem and propose an algorithm for solving nonsymmetric penta-diagonal Toeplitz linear systems. Numerical examples are given to illustrate the efficiency of our algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the solution of the following n-by-n nonsingular, nonsymmetric penta-diagonal Toeplitz linear systems

$$A\mathbf{x} = \mathbf{f},\tag{1}$$

where the coefficient matrix A is defined as

and $a, b, c, d, e \in \mathbb{R}$. When matrix A is symmetric, fast algorithms have been presented in [7,8,11]. In this paper, we generalize these algorithms and propose an algorithm for solving the nonsymmetric penta-diagonal Toeplitz linear systems. For general nonsymmetric penta-diagonal linear systems, but not Toeplitz, algorithms have been proposed in [2,5]. For related works such as computing the inverse and determinant of penta-diagonal matrices, see e.g. [1,3,4,10,12] and references therein.

^{*} Corresponding author.

E-mail addresses: dulei@dlut.edu.cn (L. Du), sogabe@ist.aichi-pu.ac.jp (T. Sogabe), zhang@na.cse.nagoya-u.ac.jp (S.-L. Zhang).

The paper is organized as follows. In Section 2, we propose an algorithm for solving the penta-diagonal Toeplitz linear systems (1) and discuss its stability. In Section 3, we present some numerical experiments. Finally, we draw some conclusions in Section 4.

2. An algorithm for penta-diagonal Toeplitz linear systems

In this section, we first give a decomposition of the penta-diagonal Toeplitz matrix that is different from the *LU* factorization, then we can compute its inverse by the Sherman–Morrison–Woodbury formula. After determining unknown parameters in the matrix decomposition, we propose an algorithm for solving penta-diagonal Toeplitz linear systems. Meanwhile, we also briefly discuss the stability of the proposed algorithm.

2.1. Inverse of the penta-diagonal Toeplitz matrix and parameter determination

In general, we can solve the penta-diagonal Toeplitz linear systems (1) by the LU decomposition (assuming without pivoting). Let $A = \tilde{L}\tilde{U}$. Since A is penta-diagonal, the lower and upper triangular matrices \tilde{L} , \tilde{U} can be represented as

$$ilde{L} = egin{bmatrix} 1 & & & & & & & & \\ l_{2,1} & 1 & & & & & & \\ l_{3,1} & l_{3,2} & 1 & & & & & \\ & \ddots & \ddots & \ddots & \ddots & & & \\ & & & l_{n,n-2} & l_{n,n-1} & 1 \end{bmatrix}, \quad ilde{U} = egin{bmatrix} u_{1,1} & u_{1,2} & c & & & & & \\ & \ddots & \ddots & \ddots & & & & \\ & & & u_{n-2,n-2} & u_{n-2,n-1} & c & & \\ & & & u_{n-1,n-1} & u_{n-1,n} & \\ & & & & & u_{n,n} \end{bmatrix},$$

respectively. For this LU decomposition, 4n-4 values of l_{ij} , u_{ij} should be determined. In this case we note that the structure of the Toeplitz matrix A has not been considered. If the Toeplitz structure is taken into account, it is to be hoped that there is some other decomposition of A which can be used to solve the linear systems (1) much more effectively.

Let $l_1, l_2, u_1, u_2 \in \mathbb{C}$ and denote the unit lower triangular matrix L and upper triangular matrix U as follows

$$L = \begin{bmatrix} 1 & & & & & \\ l_1 & 1 & & & & \\ l_2 & l_1 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & l_2 & l_1 & 1 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 1 & u_1 & u_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & u_1 & u_2 \\ & & & 1 & u_1 \end{bmatrix}.$$

The product of L and U can be easily computed as follows

$$L \cdot U = \begin{bmatrix} 1 & u_1 & u_2 \\ l_1 & 1 + l_1 u_1 & \hat{b} & \ddots \\ l_2 & \hat{d} & \hat{a} & \ddots & \ddots \\ & \ddots & \ddots & \ddots & \ddots & u_2 \\ & & \ddots & \ddots & \ddots & \hat{b} \\ & & & l_2 & \hat{d} & \hat{a} \end{bmatrix},$$

where $\hat{a} = 1 + l_1u_1 + l_2u_2$, $\hat{b} = l_1u_2 + u_1$ and $\hat{d} = l_2u_1 + l_1$.

We see that the product of $L \cdot U$ is almost a Toeplitz matrix except the upper-left 2-by-2 sub-matrix

$$\begin{bmatrix} 1 & u_1 \\ l_2 & 1 + l_1 u_1 \end{bmatrix}$$

In order to obtain a Toeplitz matrix, we just need to change the upper-left 2-by-2 sub-matrix by adding the following matrix

$$\begin{bmatrix} l_1 u_1 + l_2 u_2 & l_1 u_2 \\ l_2 u_1 & l_2 u_2 \end{bmatrix}.$$

Let e_1 and e_2 be the first two column vectors of the identity matrix $I_{n \times n}$. From discussions above, we can obtain a penta-diagonal Toeplitz matrix \hat{A} as

$$\hat{A} = L \cdot U + [e_1, e_2] \begin{bmatrix} l_1 u_1 + l_2 u_2 & l_1 u_2 \\ l_2 u_1 & l_2 u_2 \end{bmatrix} \begin{bmatrix} e_1^{\mathsf{T}} \\ e_2^{\mathsf{T}} \end{bmatrix}. \tag{2}$$

Download English Version:

https://daneshyari.com/en/article/4627461

Download Persian Version:

https://daneshyari.com/article/4627461

<u>Daneshyari.com</u>