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ARTICLE INFO ABSTRACT

Keywords: Fast algorithms for solving symmetric penta-diagonal Toeplitz linear systems have been
Toeplitz matrix proposed in McNally (2010) [7], Nemani (2010) [8] and Xu (2010) [11]. In this paper, we
Penta-diagonal matrix discuss the general nonsymmetric problem and propose an algorithm for solving nonsym-

Nonsymmetric linear systems metric penta-diagonal Toeplitz linear systems. Numerical examples are given to illustrate

the efficiency of our algorithm.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the solution of the following n-by-n nonsingular, nonsymmetric penta-diagonal Toeplitz linear systems
Ax =, (M

where the coefficient matrix A is defined as
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and a, b, c,d, e € R. When matrix A is symmetric, fast algorithms have been presented in [7,8,11]. In this paper, we generalize
these algorithms and propose an algorithm for solving the nonsymmetric penta-diagonal Toeplitz linear systems. For general
nonsymmetric penta-diagonal linear systems, but not Toeplitz, algorithms have been proposed in [2,5]. For related works
such as computing the inverse and determinant of penta-diagonal matrices, see e.g. [1,3,4,10,12] and references therein.
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The paper is organized as follows. In Section 2, we propose an algorithm for solving the penta-diagonal Toeplitz linear
systems (1) and discuss its stability. In Section 3, we present some numerical experiments. Finally, we draw some conclu-
sions in Section 4.

2. An algorithm for penta-diagonal Toeplitz linear systems

In this section, we first give a decomposition of the penta-diagonal Toeplitz matrix that is different from the LU factor-
ization, then we can compute its inverse by the Sherman-Morrison-Woodbury formula. After determining unknown param-
eters in the matrix decomposition, we propose an algorithm for solving penta-diagonal Toeplitz linear systems. Meanwhile,
we also briefly discuss the stability of the proposed algorithm.

2.1. Inverse of the penta-diagonal Toeplitz matrix and parameter determination

In general, we can solve the penta-diagonal Toeplitz linear systems (1) by the LU decomposition (assuming without piv-
oting). Let A = LU. Since A is penta-diagonal, the lower and upper triangular matrices L, U can be represented as
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respectively. For this LU decomposition, 4n — 4 values of I;;, u;; should be determined. In this case we note that the structure
of the Toeplitz matrix A has not been considered. If the Toeplitz structure is taken into account, it is to be hoped that there is
some other decomposition of A which can be used to solve the linear systems (1) much more effectively.

Let I;,l;,u;,u; € C and denote the unit lower triangular matrix L and upper triangular matrix U as follows
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The product of L and U can be easily computed as follows
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where @ =1+ lLiuy + by, b=lLu, +u; and d = bu; + ;.
We see that the product of L - U is almost a Toeplitz matrix except the upper-left 2-by-2 sub-matrix
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In order to obtain a Toeplitz matrix, we just need to change the upper-left 2-by-2 sub-matrix by adding the following matrix
l] up + lez l] u;
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Let e; and e, be the first two column vectors of the identity matrix I,.,. From discussions above, we can obtain a penta-diag-
onal Toeplitz matrix A as
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