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a b s t r a c t

The envelope, EðAÞ, of a complex square matrix A is a region in the complex plane that
contains the spectrum of A and is contained in the numerical range of A. The envelope is
compact but not necessarily convex or connected. The connected components of EðAÞ have
the potential of isolating the eigenvalues of A, leading us to study its geometry, boundary,
and number of components. We also examine the envelope of normal matrices and
similarities. In the process, we observe that EðAÞ contains the 2-rank numerical range of A.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The envelope of a complex square matrix A, denoted by EðAÞ, is an eigenvalue containment region that was introduced in
[14]. Evidently, the envelope represents a theoretically, computationally and visually attractive way to localize the spectrum
of A by isolating the eigenvalues in its connected components.

The concept and definition of the envelope are based on an inequality proven in [1] that the (real and imaginary parts of
the) eigenvalues of A must satisfy. This inequality allows one to replace the half-plane to the left of the largest eigenvalue of
the hermitian part of A by a smaller region that contains the spectrum of A. Thus, upon rotating a matrix A through all angles
in ½0;2pÞ, the envelope arises as a region that contains the eigenvalues and is contained in the numerical range, FðAÞ. The
precise definition and illustrations of EðAÞ can be found in Section 3.

The rendering of EðAÞ is akin to the process for FðAÞ, essentially requiring knowledge of the first but also the second largest
eigenvalues of the hermitian part of eihA for a range of angles in ½0;2pÞ.

The envelope has properties similar to FðAÞ, e.g., it is compact, invariant under unitary similarities and homogeneous; it is
not, however, necessarily convex or connected. The aim of this paper is to further understand the properties and features of
EðAÞ as they pertain to its geometry, boundary, number of components, and containment of eigenvalues. In particular, we
study the case of normal matrices and eigenvalues, and make comparisons to the numerical range. In the process, we dis-
cover that the envelope contains the 2-rank numerical range of A introduced in [2].

This paper is organized as follows. In Section 2, we describe the notions relevant to the definition and study of the enve-
lope. In Section 3, the envelope is defined formally, its basic properties are reviewed, and its relation to the 2-rank numerical
range is established. Section 4 contains results on extremal eigenvalues, normal matrices (Section 4.1) and similarities
(Section 4.2), and the effects of such assumptions on the geometry of the envelope are examined. Finally, a result on the
eigenvectors of the right-most eigenvalues is given in Section 5, and some conclusions are presented in Section 6.
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2. Definitions and preliminaries

Let A 2 Cn�n (n P 2) be an n� n complex matrix with spectrum rðAÞ. Consider the hermitian and skew-hermitian parts of
A;HðAÞ ¼ ðAþ A�Þ=2 and SðAÞ ¼ ðA� A�Þ=2, respectively, and let d1ðAÞP d2ðAÞP � � �P dnðAÞ denote the eigenvalues of HðAÞ
in a nonincreasing order. Let also y1 2 Cn be a unit (with respect to the Euclidean vector norm) eigenvector of
HðAÞcorrespondingto\color{black}{\delta}_{1}(A):

2.1. The standard numerical range

The numerical range (also known as the field of values) of A is defined as

FðAÞ ¼ v�Av 2 C : v 2 Cn with v�v ¼ 1f g:

It is a compact and convex subset of C that contains rðAÞ and is a useful concept in understanding matrices and operators; see
[6, Chapter 1] and the references therein.

For an angle h 2 ½0;2pÞ, we consider the largest eigenvalue d1ðei hAÞ and an associated unit eigenvector y1ðhÞ of the
hermitian matrix Hðei hAÞ. Then, the point zh ¼ y1ðhÞ

�Ay1ðhÞ lies on the boundary of FðAÞ, denoted by @FðAÞ, and the line
Lh ¼ fe�i hðd1ðei hAÞ þ i tÞ : t 2 Rg is tangential to @FðAÞ at zh [6,7]. Furthermore, Lh defines the closed half-plane
HinðA; hÞ ¼ e�i hðsþ i tÞ : s; t 2 R with s 6 d1ðei hAÞ

� �
, which contains FðAÞ. Hence, FðAÞ can be written as an infinite

intersection of closed half-planes [6, Theorem 1.5.12], namely,

FðAÞ ¼
\

h2½0;2pÞ
e�i hðsþ i tÞ : s; t 2 R with s 6 d1ðei hAÞ
� �

¼
\

h2½0;2pÞ
HinðA; hÞ: ð1Þ

2.2. The k-rank numerical range

For 1 6 k 6 n� 1, the k-rank numerical range of matrix A 2 Cn�n is defined as

KkðAÞ ¼ l 2 C : PAP ¼ lP for some rank-k orthogonal projection P 2 Cn�nf g

¼ l 2 C : X�AX ¼ lIk for some X 2 Cn�k such that X�X ¼ Ik

n o
;

and is a natural generalization of the standard numerical range, in the sense that K1ðAÞ coincides with FðAÞ. This set was
introduced in [2] and has attracted attention because of its role in quantum information theory; specifically, it is closely con-
nected to the construction of quantum error correction codes for noisy quantum channels (see [2,3,8] and the references
therein). The range KkðAÞ is a compact and convex subset of the complex plane [16] and is given by the explicit formula
[11, Theorem 2.2]

KkðAÞ ¼
\

h2½0;2pÞ
e�i hðsþ i tÞ : s; t 2 R with s 6 dkðei hAÞ
� �

: ð2Þ

Moreover, KkðAÞ is invariant under unitary similarity and satisfies Kn�1ðAÞ# Kn�2ðAÞ # � � � # K2ðAÞ# K1ðAÞ ¼ FðAÞ. For k P 2,
KkðAÞ does not necessarily contain all of the eigenvalues of A and, in fact, may be empty [10].

If the matrix A 2 Cn�n is normal with (not necessarily distinct) eigenvalues k1; k2; . . . ; kn, then (2) implies that (see Corol-
lary 2.4 of [11])

KkðAÞ ¼
\

16j1<j2<���<jn�kþ16n

conv kj1 ; kj2 ; . . . ; kjn�kþ1

� �
; ð3Þ

where convf�g denotes the convex hull. Efficient techniques to generate KkðAÞ for normal A, using half-planes determined by
the eigenvalues instead of formula (3), are proposed in [4].

2.3. The cubic curve CðAÞ

For matrix A 2 Cn�n, define the nonnegative quantities vðAÞ ¼ kSðAÞy1k
2
2 and uðAÞ ¼ Imðy�1SðAÞy1Þ 6 kSðAÞy1k2 ¼

ffiffiffiffiffiffiffiffiffiffi
vðAÞ

p
,

where k � k2 denotes the spectral matrix norm (i.e., the norm subordinate to the Euclidean vector norm). Adam and Tsatsomeros
[1], extending a methodology of [12], derived the following theorem.

Theorem 2.1. [1, Theorem 3.1] Let A 2 Cn�n. Then, for every eigenvalue k 2 rðAÞ,

ðRek� d2ðAÞÞðImk� uðAÞÞ2 6 ðd1ðAÞ � RekÞ½vðAÞ � uðAÞ2 þ ðRek� d2ðAÞÞðRek� d1ðAÞÞ�:
Motivated by the above result, the authors of [1] introduced and studied the algebraic curve

CðAÞ ¼ sþ i t : s; t 2 R; ðd2ðAÞ � sÞ½ðd1ðAÞ � sÞ2 þ ðuðAÞ � tÞ2� þ ðd1ðAÞ � sÞðvðAÞ � uðAÞ2Þ ¼ 0
n o

:
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