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a b s t r a c t

This paper is concerned with n-species model of facultative mutualism in random environ-
ments. The environment variability in this study is characterized with both white noise and
color noise modeled by Markovian switching. We established new sufficient conditions
that ensuring that the system model is positive recurrent. We also showed the existence
of a unique ergodic stationary distribution. The presented results are demonstrated by
numerical simulations.
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1. Introduction

In [1], Mao investigated the existence of a unique ergodic stationary distribution of the stochastic n-dimensional Lotka–
Volterra system. In their paper, the growth rates were perturbed by white noise and the stochastic Lotka–Volterra system for
n interacting species is described by the stochastic differential equation (SDE, for short)

dxiðtÞ ¼ xiðtÞ bi þ
Xn

j¼1

aijxjðtÞ
 !

dt þ
Xn

j¼1

rijxiðtÞdBjðtÞ; ð1Þ

where xiðtÞ stands for the population size of species i at time t; bi is the rate of growth and aij represents the effect of inter-
specific (if i – j) or intraspecific (if i ¼ j) interaction. Here BiðtÞ are independent one-dimensional standard Brownian
motions. Let BðtÞ ¼ B1ðtÞ; . . . ;BnðtÞð ÞT be an n-dimensional Brownian motion. We can rewrite (1) in matrix form as

dxðtÞ ¼ diagðx1ðtÞ; . . . ; xnðtÞÞ bþ AxðtÞð Þdt þ rdBðtÞ½ �; ð2Þ

where x ¼ ðx1 . . . ; xnÞT ; b ¼ ðb1 . . . ; bnÞT ;A ¼ ðaijÞn�n and r ¼ ðrijÞn�n.
Recently, some asymptotic properties of the Lotka–Volterra models perturbed by white noises have been studied by many

authors (see e.g. [2,3,1] and the references cited therein). In [2], Bahar and Mao showed that if the noise is sufficiently large,
the solution of Eq. (2) will become extinct with probability one. More recently, Pang et al. [3] studied the asymptotic prop-
erties when the noise is relatively small. But the existence of a unique ergodic stationary distribution for model (2) was still
an open question until very recently; Mao [1] showed that system (2) has a unique stationary distribution under the follow-
ing assumptions:
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� r is a nonsingular matrix,
� �A is a nonsingular M-matrix,
�
Pn

j¼1r2
ij < 2bi.

As mentioned in Zhu and Yin [6,7], the growth intraspecific or interspecific interactions aij for 1 6 i; j 6 n are often subject
to environmental noise as well. These changes usually cannot be described by the traditional deterministic or stochastic Lot-
ka–Volterra models. For instance, the intraspecific or interspecific rates of some species in the rainy season will be much dif-
ferent from those in the dry season. Moreover, the intraspecific competition coefficient often vary according to the changes
in nutrition and food resources. Similarly, the growth rates differ in different environments. Often, the switching between
different environments is memoryless and the waiting time for the next switch is exponentially distributed. We can hence
model the regime switching by a continuous-time Markov chain ðrðtÞÞtP0 taking values in a finite state space
S ¼ f1;2; . . . ;mg. Then system (2) becomes an SDE under regime switching of the form

dxðtÞ ¼ diagðx1ðtÞ; . . . ; xnðtÞÞ bðrðtÞÞ þ AðrðtÞÞxðtÞð Þdt þ rðrðtÞÞdBðtÞ½ �: ð3Þ

Stochastic differential equations with Markovian switching have been studied by many authors [4–11]. In [5,8], Luo and
Mao showed that the positive solution of the associated stochastic differential equation does not explode in finite time with
probability one. Moreover, they demonstrated that the solution is stochastically ultimately bounded and the average in time
of the second moment of the solution is bounded. In [9], Li et al. discussed the stochastic permanence, and extinction of a
Lotka–Volterra system under regime switching, and the limit of the average in time of the sample path was estimated. In
[10], Hu and Wang showed the global attractivity, upper boundedness of solutions system and established conditions for
asymptotically stable in distribution. Very recently, Liu et al. [11] have investigated the positive recurrence of the SDE under
regime switching system (3). They also showed the existence of a unique ergodic stationary distribution and derived expres-
sions for its mean and variance. The purpose of this paper is to improve the results obtained by Liu et al. [11] by giving weak
conditions ensuring the positive recurrence and the existence of the stationary distribution for the system (3).

2. Preliminaries and previous results

Throughout this paper, ðX;F ; fF tgtP0;PÞ is a complete probability space with a filtration fF tgtP0 satisfying the usual con-
ditions (i.e. it is increasing and right continuous while F 0 contains all P -null sets). Let ðrðtÞÞtP0 be a right-continuous Markov
chain on the probability space ðX;F ; fF tgtP0;PÞ, taking values in a finite state space S ¼ f1;2; . . . ;mg with the generator
H ¼ ðhuv Þ16u;v6m given, for d > 0, by

P rðt þ dÞ ¼ v jrðtÞ ¼ uð Þ ¼
huvdþ oðdÞ; if u – v;
1þ huudþ oðdÞ; if u ¼ v:

�

Here, huv P 0 is the transition rate from u to v while huu ¼ �
P

u–vhuv . As a standing hypothesis, we assume in this paper that
the Markov chain ðrðtÞÞtP0 is irreductible, which means that the system can switch from any regime to any other regime.
Under this assumption, the Markov chain has a unique stationary distribution p ¼ ðp1;p2; . . . ;pmÞ which can be determined
by solving the linear equation pH ¼ 0 subject to

Pm
k¼1pk ¼ 1; and pk > 0; 8k 2 S. We will need a few more notations. If A is

a vector or matrix, its transpose is denoted by AT . Let j:j denote the Euclidean norm in Rn as well as the trace norm of a
matrix, i.e.

jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðAT AÞ

q
:

We also introduce the positive cone Rn
þ ¼ x 2 Rn : xi > 0 for all 1 6 i 6 nf g. for a symmetric n� n matrix A, we introduce the

following definition:

kþmaxðAÞ ¼ sup
x2Rn

þ ; jxj¼1
xT Ax kmaxðAÞ ¼ sup

x2Rn ; jxj¼1
xT Ax:

It is therefore clear that we always have

kþmaxðAÞ 6 kmaxðAÞ and xT Ax 6 kþmaxðAÞjxj
2 for any x 2 Rn

þ:

The n� n matrix Dðx; kÞ , diagðx1 . . . ; xnÞrðkÞrTðkÞdiagðx1 . . . ; xnÞ with elements

dijðx; kÞ ¼
Xn

h¼1

rihðkÞrjhðkÞxixj

is called the diffusion matrix. The system (3) has a generator L given as follows. For any twice continuously differentiable
Vðx; kÞ 2 C2ðRn � SÞ,

LVðx; kÞ ¼ rVðx; kÞdiagðx1; . . . ; xnÞ bðkÞ þ AðkÞxð Þ þ 1
2

trace Dðx; kÞr2Vðx; kÞ
� �

þHVðx; :ÞðkÞ;
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