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a b s t r a c t

This paper deals with the real dynamical analysis of iterative methods for solving nonlinear
systems on vectorial quadratic polynomials. We use the extended concept of critical point
and propose an easy test to determine the stability of fixed points to multivariate rational
functions. Moreover, an Scaling Theorem for different known methods is satisfied. We use
these tools to analyze the dynamics of the operator associated to known iterative methods
on vectorial quadratic polynomials of two variables. The dynamical behavior of Newton’s
method is very similar to the obtained in the scalar case, but this is not the case for other
schemes. Some procedures of different orders of convergence have been analyzed under
this point of view and some ‘‘dangerous’’ numerical behavior have been found, as attracting
strange fixed points or periodic orbits.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Recently, the dynamical behavior of the rational operator associated to an iterative method for solving nonlinear equa-
tions applied to low-degree polynomials has shown to be an efficient tool for analyzing the stability and reliability of the
methods, see for example [1–10] an the references therein. In this work, we propose a generalization of these dynamical
tools in order to be applied on iterative schemes for solving nonlinear systems.

Let us consider the problem of finding a real zero of a function F : D # Rn�!Rn, that is, a solution �x 2 D of the nonlinear
system FðxÞ ¼ 0, of n equations with n variables, being fi; i ¼ 1;2; . . . ;n the coordinate functions of F. This solution can be
obtained as a fixed point of some function �G : Rn�!Rn by means of the fixed-point iteration method

xðkþ1Þ ¼ �GðxðkÞÞ; k ¼ 0;1; . . . ; ð1Þ

where xð0Þ is the initial estimation.
A basic result in order to analyze the convergence of an iterative method for solving nonlinear systems is the following,

that can be found in [11].
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Theorem 1. Let D ¼ fðx1; x2; . . . ; xnÞT such that ai 6 xi 6 bi; for each i ¼ 1;2; . . . ;ng for some collection of constants
a1; a2; . . . ; an and b1; b2; . . . ; bn. Suppose �G : D � Rn ! Rn is a continuous function with the property that �GðxÞ 2 D whenever
x 2 D. Then �G has a fixed point in D. Moreover, suppose that all the component functions of �G have continuous partial derivatives
and a constant K < 1 exists with

@�giðxÞ
@xj

����
���� 6 K

n
< 1; x 2 D;

for each j ¼ 1;2; . . . ;n and each component function �gi of �G. Then, the sequence fxðkÞg1k¼0 defined by an arbitrarily selected xð0Þ 2 D
and generated by (1) converges to the unique fixed point �x 2 D and

kxðkÞ � �xk 6 Kk

1� K
kxð1Þ � xð0Þk:

In order to analyze the dynamical behavior of a fixed-point iterative method for nonlinear systems when is applied to n-
variable polynomial pðxÞ; p : Rn ! Rn, x 2 Rn , it is necessary to recall some basic dynamical concepts.

Let us denote by GðxÞ the vectorial fixed-point function associated to the iterative method on polynomial pðxÞ. Let us note
that the next concepts and results are also valid when the iterative method is applied on a general function FðxÞ.

Definition 1. Let G : Rn ! Rn be a vectorial rational function. The orbit of a point xð0Þ 2 Rn is defined as the set of successive
images of xð0Þ by the vectorial rational function, xð0Þ;Gðxð0ÞÞ; . . . ;Gmðxð0ÞÞ; . . .

� �
.

The dynamical behavior of the orbit of a point of Rn can be classified depending on its asymptotic behavior. In this way, a
point x� 2 Rn is a fixed point of G if Gðx�Þ ¼ x�.

We recall a known result in Discrete Dynamics that gives the stability of fixed points for nonlinear operators.

Theorem 2 [12, page 558]. Let G from Rn to Rn be C2. Assume x� is a period-k point. Let k1; k1; . . . ; kn be the eigenvalues of G0ðx�Þ.

(a) If all the eigenvalues kj have jkjj < 1, then x� is attracting.
(b) If one eigenvalue kj0 has jkj0 j > 1, then x� is unstable, that is, repelling or saddle.
(c) If all the eigenvalues kj have jkjj > 1, then x� is repelling.

In addition, a fixed point is called hyperbolic if all the eigenvalues kj of G0ðx�Þ have jkjj– 1. In particular, if there exist an
eigenvalue ki such that jkij < 1 and an eigenvalue kj such that jkjj > 1, the hyperbolic point is called saddle point.

Let us note that, the entries of G0ðx�Þ are the partial derivatives of each coordinate function of the vectorial rational oper-
ator that defines the iterative scheme. To avoid the calculation of spectrum of G0ðx�Þ we propose the following result that,
being consistent with the previous theorem, gives us a practical tool for classifying the stability of fixed points in many cases.

Proposition 1. Let x� be a fixed point of G. Then,

(a) If @giðx�Þ
@xj

��� ��� < 1
n for all i; j 2 f1; . . . ;ng, then x� 2 Rn is attracting.

(b) If @giðx�Þ
@xj

��� ��� ¼ 0, for all i; j 2 f1; . . . ;ng, then x� 2 Rn is superattracting.

(c) If @giðx�Þ
@xj

��� ��� > 1
n, for all i; j 2 f1; . . . ;ng, then x� 2 Rn is unstable and lies at the Julia set.

being giðxÞ; i ¼ 1;2; . . . ;n, the coordinate functions of the fixed point multivariate function G.
The proof of this result is based in Theorem 2 and on the facts that qðG0ðx�ÞÞ 6 kG0ðx�Þk, where qðAÞ denotes the spectral

radius of matrix A and the unstable points (repelling and saddle) are always on Julia set.
It is obvious that, if the order of the iterative method is at least two, then the roots of the nonlinear function are super-

attracting fixed points of the vectorial rational function associated to the iterative method. If a fixed point is not a root of the
nonlinear function, it is called strange fixed point and its character can be analyzed in the same manner.

Then, if x� is an attracting fixed point of the rational function G, its basin of attraction Aðx�Þ is defined as the set of pre-
images of any order such that

Aðx�Þ ¼ xð0Þ 2 Rn : Gmðxð0ÞÞ ! x�;m!1
� �

:

In the same way as in the scalar case, the set of points whose orbits tend to an attracting fixed point x� is defined as the
Fatou set, FðGÞ. The complementary set, the Julia set J ðGÞ, is the closure of the set consisting of its repelling fixed points, and
establishes the borders between the basins of attraction.

The concept of critical point can be defined following the idea of multivariate convergence of iterative methods.

Definition 2. A fixed point x 2 Rn is a critical point of G if its coordinate functions gi satisfy @giðxÞ
@xj
¼ 0 for all i; j 2 f1; . . . ;ng.

In this terms, a superattracting fixed point will be also a critical point and, from the numerical point of view, the iterative
method involved will be, at least, of second order of convergence. A critical point that is not root of the polynomial pðxÞ will
be called free critical point.
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