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a b s t r a c t

We consider a class of boundary value problems for nonlinear fractional differential equa-
tions involving Caputo-type fractional derivatives. Using an integral equation reformula-
tion of the boundary value problem, some regularity properties of the exact solution are
derived. Based on these properties and spline collocation techniques, the numerical solu-
tion of boundary value problems by suitable non-polynomial approximations is discussed.
Optimal global convergence estimates are derived and a superconvergence result for a spe-
cial choice of grid and collocation parameters is given. Theoretical results are tested by two
numerical examples.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the convergence behavior of a high order numerical method for the solution of nonlinear boundary
value problems of the form

ðDa
�yÞðtÞ ¼ f ðt; yðtÞÞ; 0 6 t 6 b; ð1:1Þ

Xn0

j¼0

aijyðjÞð0Þ þ
Xn1

j¼0

bijy
ðjÞðb1Þ ¼ ci; 0 < b1 6 b; i ¼ 0; . . . ;n� 1; ð1:2Þ

where

n� 1 < a < n; 0 6 n0 6 n� 1; 0 6 n1 6 n� 1;
n 2 N :¼ f1;2; . . .g; ci;aij; bij 2 R :¼ ð�1;1Þ;

ð1:3Þ

y : ½0; b� ! R is an unknown function, Da
�y is the Caputo-type fractional derivative of y and f : ½0; b� � R! R is a given con-

tinuous function.
The Caputo fractional derivative Da

�y of order a > 0 is defined by the formula (see, e.g., [1])

ðDa
�yÞðtÞ :¼ ðDaðy�Qdae�1½y�ÞÞðtÞ; t > 0; a > 0;
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where dae is the smallest integer not less than a,

Qdae�1½y�ðtÞ :¼
Xdae�1

i¼0

yðiÞð0Þ
i!

ti

is the Taylor polynomial of degree dae � 1 for y, centered at 0, and Da is the Riemann–Liouville fractional differentiation oper-
ator of order a:

ðDayÞðtÞ :¼ ðJdae�ayÞðdaeÞðtÞ; t > 0; a > 0:

Here Ja is the Riemann–Liouville integral operator, defined by the formula

ðJayÞðtÞ :¼ 1
CðaÞ

Z t

0
ðt � sÞa�1 yðsÞds; t > 0; a > 0; ð1:4Þ

where C is the Euler gamma function. For a ¼ 0 we set D0 ¼ D0
� :¼ I and J0 :¼ I where I is the identity mapping. If a ¼ n 2 N

then Dny ¼ Dn
�y ¼ yðnÞ where yðnÞ is the classical nth order derivative of y.

It is well known (see, e.g., [2]) that Ja; a > 0, is linear, bounded and compact as an operator from L1ð0; bÞ into C½0; b�.
Moreover (see, e.g., [3]), we have for any y 2 L1ð0; bÞ that

ðJayÞðkÞ 2 C½0; b�; ðJayÞðkÞð0Þ ¼ 0; a > 0; k ¼ 0; . . . ; dae � 1; ð1:5Þ

JaJby ¼ Jaþby; a > 0; b > 0; ð1:6Þ

DbJay ¼ Db
� Jay ¼ Ja�by; 0 < b 6 a: ð1:7Þ

Fractional differential equations arise in various areas of science and engineering. In the last few decades theory and
numerical analysis of fractional differential equations have received increasing attention (see, for example, [1,3–7] and ref-
erences cited in these books). A lot of publications are devoted to the numerical solution of fractional initial value problems
(see, e.g., [1,7–13]). Also fractional boundary value problems have received attention quite recently. Various existence and
uniqueness results for boundary value problems of fractional differential equations have been obtained, for example, in
[1,14–18]. Numerical methods for solving fractional boundary value problems can be found in [19–25].

An effective way for solving integral and integro-differential equations is to apply spline collocation methods (see, e.g.,
[26–32]). Using suitable integral equation reformulations, in [10,25] spline collocation methods have been applied also to
construct effective numerical algorithms for linear fractional differential equations. Actually, in [10,25] spline collocation
techniques are utilized to produce piecewise polynomial approximations for the highest-order derivative of the exact solu-
tion. After that with the help of these approximations high order (non-polynomial) approximations for the solution of the
problem are constructed and analyzed. In the paper [13] similar approach has been used to solve initial value problems
for nonlinear fractional differential equations. However, here substantially new ideas are necessary for studying both the
smoothness of the exact solution and the convergence behavior of the proposed algorithms.

The purpose of the present paper is to extend our previous studies to non-linear fractional boundary value problems of
the form (1.1)–(1.2) in a situation where the derivatives of f ðt; yÞmay be unbounded at t ¼ 0 (see (2.8) and (2.9) below). We
restrict ourselves to Eq. (1.1) with non-integer a. If a ¼ n 2 N is an integer, then (1.1)–(1.2) is a classical boundary value
problem for ordinary differential equations which is widely examined.

The remainder of the present paper is arranged as follows. In Section 2 we prove Theorem 2.1 which gives some essential
information about the behavior of higher order derivatives of the exact solution of problem (1.1)–(1.2). This information will
play a key role in the convergence analysis of our algorithms in Section 4. In Section 3 the description of our method is given.
We use an integral equation reformulation of the problem and piecewise polynomial approximations on special non-uniform
grids reflecting the possible singular behavior of the exact solution. In Section 4 we prove the convergence of our method,
derive optimal global convergence estimates and analyze a (global) superconvergence effect for a special choice of grid and
collocation parameters. The main results of the paper are formulated in Theorems 2.1, 4.1 and 4.2. Finally, in Section 5 the
obtained theoretical results are verified by two numerical examples.

2. Smoothness of the solution

Using some ideas from [25] (see also [1]) we find first an integral equation reformulation for the problem (1.1)–(1.2). Let
y 2 C½0; b� be such that Da

�y 2 C½0; b�. Introduce a new unknown function z :¼ Da
�y. Then (see [1,3])

yðtÞ ¼ ðJazÞðtÞ þ
Xn�1

k¼0

ck tk; t 2 ½0; b�; ; n ¼ dae 2 N; ð2:1Þ

where ck 2 R ðk ¼ 0; . . . ;n� 1Þ are arbitrary constants. The function y of the form (2.1) satisfies the boundary value
conditions (1.2) if and only if (see (1.7) and (1.5))
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