
Numerical solution of fractional partial differential equations
with variable coefficients using generalized fractional-order
Legendre functions

Yiming Chen, Yannan Sun ⇑, Liqing Liu
College of Sciences, Yanshan University, Qinhuangdao 066004, Hebei, China

a r t i c l e i n f o

Keywords:
Generalized fractional-order Legendre
functions
Operational matrix
Fractional partial differential equations
Numerical solution
Tau method
Convergence analysis

a b s t r a c t

In this paper, a general formulation for the generalized fractional-order Legendre functions
(GFLFs) is constructed to obtain the numerical solution of fractional partial differential
equations with variable coefficients. The special feature of the proposed approach is that
we define generalized fractional order Legendre functions over ½0; h� based on fractional-
order Legendre functions. We use these functions to approximate the unknown function
on the interval ½0; h� � ½0; l�. In addition, the GFLFs fractional differential operational and
product matrices are driven. These matrices combine with Tau method to transform the
problem to solve systems of linear algebraic equations. By solving the linear algebraic
equations, we can obtain the numerical solution. The error analysis shows that the algo-
rithm is convergent. The method is tested on examples. The results show that the GFLFs
yields better results.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Fractional order calculus is a branch of calculus theory, which makes calculus theory more perfect. However, since the
kernel of the differential equations is fractional, we are very difficult to obtain the exact solution. In recent years, some
researchers have devoted to search the numerical solution of differential equations, and have proposed many powerful
and efficient numerical methods. Such as, Chebyshev and Legendre polynomials method [1,2], wavelet method [3], piecewise
constant orthogonal functions method [4] and so on. However, in order to describe memory and hereditary properties of
various materials and processes in the nature, integer order models are not sufficient to handle the situation. In these cases,
fractional partial differential equations (FPDEs) [5,6] provide powerful tool for describing the systems. Therefore, it is
important to develop efficient and fast convergent method to solve fractional partial differential. Recently, many numerical
methods have been proposed. For instance, differential transform method [7], Chebyshev collocation method [8], Laplace
transform method [9] and so on. In [10], the authors have proposed Bernstein polynomials method for fractional convec-
tion–diffusion equation with variable coefficients. In [11], the authors have acquired the numerical solution of fractional
differential equations using the-expansion method. The method based on the orthogonal functions [12–15] is a powerful
and wonderful tool for solving the FPDEs and has achieved the great successes in this field. Recently, in [16], Rida and Yousef
have proposed fractional extension of the classical Legendre polynomials in Rodrigues formula [17,18], which they replaced
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the integer order derivative with fractional order derivative. Because these functions are complex, that made them unsuit-
able for solving FPDEs. Subsequently, Kazem et al. put forward the orthogonal fractional order Legendre functions which
based on shifted Legendre polynomials in [19], they used these functions to find the numerical solution of fractional order
differential. The conclusion displayed that their method was effective, accurate, and easy to implement.

In this paper, since FLFs can well reflect the properties of the fractional order differential, we attempt to expand fractional
Legendre functions to interval ½0;h� and to acquire numerical solution of the FPDEs with variable coefficients without discret-
izing the problem. The fractional partial differential equations are defined on the regional ½0;h� � ½0; l�. The method is firstly
put forward to solve this problem. We will give some examples to show our method is effective.

The article is organized as follows: In Section 2, we introduce basic fractional derivative definition. In Section 3, we con-
struct the GFLFs and give their properties, operational matrices are also obtained. In Section 4, we present the numerical
algorithms to solve the FPDEs with variable coefficients. In Section 5, we give existence of uniqueness and convergence anal-
ysis of the present method. In Section 6, the error analysis is given. In Section 7, the proposed method is applied to several
numerical examples. A conclusion is given in Section 8.

2. Preliminaries and notations

In this section, we recall the essentials of the fractional calculus theory that will be used in this article.

Definition 1. The Riemann-Liouville definition of fractional differential operator is given by

Da
�uðxÞ ¼

1
Cðm�aÞ

dm

dtm

R t
0

uðsÞ
ðx�sÞa�mþ1 ds a > 0; m� 1 6 a < m;

dmuðxÞ
dx a ¼ m; x > 0;

8<
: ð1Þ

Definition 2. The Caputo definition of fractional differential operator is defined as

DauðxÞ ¼
1

Cðm�aÞ
R x

0
uðmÞðsÞ

ðx�sÞa�mþ1 ds; m� 1 6 a < m;

dmuðxÞ
dxm a ¼ m; x > 0;

8<
: ð2Þ

For a P 0;v P �1 and constant C, Caputo fractional derivative has some basic properties which are needed in this paper
as follows:

(i) DaC ¼ 0;

(ii) Daxv ¼
0 for v 2 N0 and v < dae;
Cðvþ1Þ

Cðvþ1�aÞ x
v�a; for v 2 N0 and v P dae or v R N0 and v > bac;

�

(iii) Da Pm
i¼0ciuiðxÞ

� �
¼
Pm

i¼0ciD
auiðxÞ; where fcigm

i¼0 are constants.

Definition 3 (Generalized Taylors formula). Suppose that DiauðxÞ 2 C½0; L� for i ¼ 0;1; . . . ;m� 1, then we have

uðxÞ ¼
Xm�1

i¼0

xia

Cðiaþ 1ÞD
iauð0þÞ þ xma

Cðmaþ 1ÞD
mauðnÞ; ð3Þ

where 0 < n 6 x; 8x 2 ½0; L�, Also, one has

uðxÞ �
Xm�1

i¼0

tia

Cðiaþ 1ÞD
iauð0þÞ

�����
����� 6 Ma

xma

Cðmaþ 1Þ ; ð4Þ

where Ma P jDmauðnÞj.
In case of a ¼ 1, the generalized Taylor’s formula is the classical Taylors formula.

3. Generalized fractional-order Legendre function

3.1. Fractional-order Legendre and generalized fractional-order Legendre functions definitions

We define the fractional-order Legendre function (FLFs) [19] by transformation t ¼ xa and a > 0 based on shifted Legen-
dre polynomials. These fractional-order Legendre functions are denoted by Flai ðxÞ; i ¼ 1;2; . . .. They are particular solution of
the normalized eigenfunctions of the singular Sturm–Liouville problem [17]

x� x1þa� �
Fl0ai ðxÞ

� �0 þ a2iðiþ 1Þxa�1FliðxÞ ¼ 0; x 2 ½0;1�:
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