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a b s t r a c t

The paper is concerned with the problem of disturbance attenuating controller design for
delayed cellular neural networks (DCNNs). Via combining four different states cases in
DCNNs and applying Razumikhin function analysis, a feedback control law in the form of
linear matrix inequality (LMI) is derived for guaranteeing disturbance attenuation of the
closed systems. Finally, a numerical example of DCNNs is given to indicate the effectiveness
of the proposed disturbance attenuating control. Because there is no restriction that the
time derivative of the delay is smaller than 1 which is a hypothesis of many articles concern-
ing time-varying delayed systems, the proposed scheme has significance impact on the
design and applications of the disturbance attenuating control. Meanwhile an example of
CNNs is offered to show the usefulness of the controller to the systems without time delay.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The well-known cellular neural networks (CNNs), proposed by Chua and Yang [1] in 1988, have been intensively studied
theoretically due to their extensive applications in signal and image processing, pattern recognition, parallel computations,
as well as optimization problems [2–5]. In many applications due to the finite switching speed of amplifiers in electronic
networks or finite speed for signal propagation in biological networks, time-delays inevitably occur which frequently lead
to instability and oscillation, bifurcation or chaos. It is well known that the stability of neural network is the prerequisite
for its applications in either pattern recognition or optimization solving. Thus, it is very important and significant to
investigate the stability of CNN with time-delays (DCNNs) [6–7].

Over the past decades, many researchers have made great efforts to investigate the stability of time-delayed cellular neu-
ral networks and many encouraging results have been obtained on the delay-independent or delay-dependent stability anal-
ysis for the dynamics systems. The LMI-based techniques have been successfully employed in a variety of stability analysis
for neural networks. Asymptotic stability of DCNNs were studied in [8–11]. These papers only concern with stability prop-
erties of such systems, without providing any information about the transient responses and decay rates (i.e. exponentially
convergence rates) of the system’s states. Thus, exponential stability is analyzed for DCNNs. The study on exponential sta-
bility and estimation of the exponential convergence rates for neural networks with constant or time-varying delays is car-
ried out in [12–13]. In [14], by applying the Finsler’s Lemma and constructing appropriate Lyapunov–Krasovskii functional
based on delay partitioning, several improved delay-dependent conditions are developed to estimate the neuron state with
some available output measurements such that the error-state system is global asymptotically stable. It sometimes includes
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fewer LMI variables. Compared with the method of Lyapunov functionals as in most previous studies, a new sufficient con-
dition is presented in [15] ensuring the global exponential stability of cellular neural networks with time-varying delays by
using an approach based on delay differential inequality combining with Young inequality, which is simpler and more effec-
tive for stability analysis. Further the robust asymptotic stability criteria or robust exponential stability criteria are estab-
lished to cope with parametric uncertainties of the weight coefficients of the neurons such as in [16–22]. A common
shortcoming of these contributions is that, though at times robustness against model inaccuracies is considered, little is
known on how to deal efficiently with persistent disturbances.

When we deal with neural networks with time-varying delays, a class of systems is unavoidable under persistent distur-
bance. To the best of our knowledge, however, the disturbance attenuating controller design for DCNNs has not yet been
explored. Accordingly, the current study develops a disturbance attenuating control scheme for the closed-loop DCNNs to
achieve a bounded attractor for any disturbances belonged to a given set. The plan of the paper is as follows. In Section 2,
the model formulation and some preliminaries are given. And the definition of disturbance attenuating controller is pre-
sented which gives the main objectives of this paper. Section 3 is devoted to deriving the sufficient conditions for the dis-
turbance attenuating controller for DCNNs. By fully consideration of the four different cases of states in DCNNs and applying
Razumikhin theorem, the QMI criterion for getting disturbance attenuating controller is obtained. The proposed controller
can be changed into the LMI problem which can be solved efficiently by the help of MATLAB. Finally, in Section 4, numerical
examples are presented to show the feasibility and effectiveness of our results.

2. Problem statement and preliminaries

Throughout this paper, R ¼ ð�1;þ1Þ;Rn denotes any real n -dimensional Euclidean space. Consider the following
DCNNs subject to persistent disturbances:

_xiðtÞ ¼ �cixiðtÞ þ
Xn

j¼1

aijfjðxjðtÞÞ þ
Xn

j¼1

bijfjðxjðt � sjðtÞÞÞ þ
Xm

k¼1

dikhkðtÞ þ ui; t P 0;

xiðtÞ ¼ /iðtÞ; t 2 ½�s;0�

8><
>: ð1Þ

where i ¼ 1;2; . . . ;n n P 2 is the number of neurons in the network), ci > 0 represents the rate with which the ith neuron
will reset its potential to the resting state in isolation when disconnected from the network and external inputs, sj represents
the transmission delay along the axon of the jth unit and satisfies 0 6 sjðtÞ 6 s; uj is external input; aij and bij are the synaptic
connection strengths; f ðxjðtÞÞ ¼ 1

2 ðjxjðtÞ þ 1j � jxjðtÞ � 1jÞ; ðj ¼ 1;2; . . . ;nÞ is the activation function of the jth neuron at time
t; hk(t) (k = 1, 2, ..., m) is the bounded disturbance, /i(t) is the initial function, and is assumed to be bounded and continuous
on [�s, 0].

System (1) can be rewritten into the followed nonlinear differential equation of vector form:

_xðtÞ ¼ �CxðtÞ þ Af ðxðtÞÞ þ Bf ðxðt � sðtÞÞÞ þ DhðtÞ þ uðtÞ; t P 0
xðtÞ ¼ /ðtÞ; t 2 ½�s;0�;

�
ð2Þ

where xðtÞ ¼ colfxiðtÞg 2 Rn is the state vector; C = diag{ci}, A = (aij), B ¼ ðbijÞ 2 Rn�n are the connection weight matrix and
the delayed connection weight matrix, respectively; D 2 Rn�m is the weighting coefficients of the disturbance; f(x(t)) =
col{fj(xj(t))}, f(x(t � s(t))) = col{fj(xj(t � sj(t)))}, hðtÞ ¼ colfhkðtÞg 2 Rm; uðtÞ 2 Rn is the control. Here we have slightly abused
the notation by using f(�) to denote both the scalar valued and the vector valued functions. In addition, without loss of

generality, we assume that the bounded disturbance belongs to the set H ¼ fh hTh 6 1
��� g.

Let the state feedback be u = � Kx, then the closed-loop systems of DCNNs (2) is

_xðtÞ ¼ �CxðtÞ þ Af ðxðtÞÞ þ Bf ðxðt � sðtÞÞÞ þ DhðtÞ � KxðtÞ; ð3Þ

For an initial state x(t) = /(t), t e [ � s, 0], we denote the state trajectory of the closed-loop systems (3) under h as x = x(t, /, h).
A set D in Rn is said to be invariant if all the trajectories starting from it will remain in it for any h 2 H. If the invariant set D
also satisfy that any trajectories starting from outside the set D will eventually enter into the set for any h e W, then the set D
is called the attractor of the closed-loop systems (3). For the purpose of disturbance rejection, we would like to have a small
attractor containing the origin in its interior so that a trajectory will eventually stay close to the origin. Now we formally
state the objectives of this paper as follows.

Definition. Given the DCNNs (2), the controller u = �Kx is called disturbance attenuating if the closed-loop systems (3)
satisfy the following conditions:

(1) When h(t) = 0, the closed-loop systems (3) are globally asymptotically stable;
(2) When h(t) – 0, there exists a bounded attractor for the closed-loop systems (3).

To construct such controller, let us first review the famous Razumikhin-type theorems for the latter use to deal with
delayed differential equations which in mathematics are also called retarded functional differential equations.
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