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a b s t r a c t

Neville elimination is an elimination procedure alternative to Gaussian elimination and
very adequate when dealing with some special classes of matrices. In this paper, we
present pivoting strategies such that the radii of the Geršgorin circles of the Schur
complements through Neville elimination with these pivoting strategies reduce their
length and we consider classes of matrices important in many applications. We include
illustrative examples comparing the results with those obtained with Gaussian elimination
and showing that our hypotheses are necessary.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Eigenvalue localization is a very important problem in numerical mathematics. One of the most classical results in this
area [14] is the Geršgorin theorem, which provides a family of disks containing all eigenvalues of a square matrix. Eigenvalue
localization results for the Schur complements [3] of matrices as well as other circles related with Gaussian elimination is a
recent field of research (see, for instance, [4,8,13]).

This paper considers the eigenvalue localization for Schur complements through an elimination procedure alternative to
Gaussian elimination and called Neville elimination. Neville elimination has been very adequate when dealing with some
classes of matrices important in applications such as sign regular matrices or totally positive matrices [7]. In Section 4 of this
paper we also see new advantages of using Neville elimination for other classes of matrices such as the inverses of tridiag-
onal totally positive matrices or M-matrices.

It was proved in Section 2 of [13] that, in general, the lengths of the radii of the Geršgorin circles can grow arbitrarily
during the process of Gaussian elimination. In fact, the same claim holds for Neville elimination because the example of
[13] is a 2� 2 matrix and so its Neville elimination coincides with its Gaussian elimination. However, for the class of non-
singular sign regular matrices, we show in Section 3 a pivoting strategy such that the lengths of the radii of the Geršgorin
circles always decrease. The class of nonsingular sign-regular matrices contains the important class of nonsingular totally
positive matrices, and in this case the pivoting strategy does not produce row exchanges. Section 4, provides a very wide
class of matrices for which the diminution of the radii of the Geršgorin circles presents a very interesting behaviour, in
contrast to that for Gaussian elimination.

2. Basic definitions and notations

Given positive integers k 6 n; Qk;n denotes the set of strictly increasing sequences of k positive integers less than or equal
to n:
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a ¼ ðaiÞki¼1 2 Q k;n if ð1 6Þa1 < a2 < . . . < ak 6 nð Þ:

Let n; m; k; l be positive integers with k 6 n and l 6 m, let A be a real n�m matrix and a 2 Q k;n and b 2 Q l;m. Then A½ajb�
is by definition the k� l submatrix of A containing rows numbered by a and columns numbered by b. When a ¼ b the prin-
cipal submatrix A½aja� is simply denoted by A½a�. If A ¼ ðaijÞ16i;j6n, let us recall that the minors det A½1; . . . ; k�; k ¼ 1; . . . ;n, are

called leading principal minors of A. We also call the minors det A½k; . . . ;n�; k ¼ 1; . . . ;n, as final principal minors of A.
Neville elimination (NE) is a procedure to create zeros in a matrix by means of adding to a given row a suitable multiple of

the previous one. Given an n� n nonsingular matrix A ¼ ðaijÞ16i;j6n, let Að1Þ :¼ ðað1Þij Þ16i;j6n
with að1Þij ¼ aij. Neville elimination of

A with a pivoting strategy produces a sequence of matrices as follows:

A ¼ Að1Þ�!~Að1Þ�!Að2Þ�!~Að2Þ�! . . .�!AðnÞ ¼ ~AðnÞ ð1Þ

such that AðtÞ ¼ ðaðtÞij Þ16i;j6n
has zeros below its main diagonal in the first t � 1 columns. The matrix ~AðtÞ ¼ ð~aðtÞij Þ16i;j6n

is obtained

from the matrix AðtÞ by reordering the rows t; t þ 1; . . . ; n of AðtÞ according to the given pivoting strategy. The matrix Aðtþ1Þ is

obtained from ~AðtÞ according to the formula

aðtþ1Þ
ij ¼

~aðtÞij ; if 1 6 i 6 t;

~aðtÞij �
~aðtÞ

it

~aðtÞ
i�1;t

~aðtÞi�1;j; if t þ 1 6 i; j 6 n and ~aðtÞi�1;t – 0;

~aðtÞij ; if t þ 1 6 i 6 n and ~aðtÞi�1;t ¼ 0;

8>>>><
>>>>:

ð2Þ

for all t 2 f1; . . . ; n� 1g. The element

pij :¼ ~aðjÞij ; 1 6 j 6 n; j 6 i 6 n; ð3Þ

will be called the (i; j) pivot of the NE of A. Observe that the computational cost of the NE without rows exchanges of an n� n
matrix coincides with the cost of Gaussian elimination without row exchanges. Finally, the number

mij ¼
~aðjÞ

ij

~aðjÞ
i�1;j

¼ pij

pi�1;j
; if ~aðjÞi�1;j – 0;

0; if ~aðjÞi�1;j ¼ 0;

8><
>: ð4Þ

is called the ði; jÞ multiplier of Neville elimination of A, where 0 6 j < i 6 n.
By a signature sequence we mean a real sequence e ¼ ðeiÞ with jeij ¼ 1 for all i. An m� n matrix A satisfying

ek det A½ajb�P 0 for all a 2 Qk;m; b 2 Q k;n and for k ¼ 1; . . . ; r ¼ minfm;ng is called sign regular with signature e and will
be denoted by SR. A is totally positive (TP) if all its minors are nonnegative. Let us recall that these matrices are also called
totally nonnegative matrices. A TP matrix is an SR with a signature formed by 1’s. Many applications of TP and SR matrices
can be seen in [1,9]. The following concept will also be used in Section 4. Given an n�m matrix A and a positive integer r 6 n,
we say that A is TPr if det A½ajb�P 0 for all a 2 Q k;m; b 2 Q k;n and for k ¼ 1; . . . ; r.

We now present a pivoting strategy for Neville elimination very useful when dealing with SR matrices (see [5,6]). Let A be
an n� n nonsingular SR matrix and for t ¼ 1; . . . ;n� 1 denote by Pt ¼ ðdn�tþ2�i;jÞ16i;j6n�tþ1 the reverse identity matrix
ðn� t þ 1Þ � ðn� t þ 1Þ. The two-determinantal pivoting strategy can be applied to nonsingular SR matrices (see [5]) and reor-

ders the rows of ~AðtÞ½t; . . . ;n� according to the following criterium. If aðtÞtt ¼ 0, then we reverse the ordering of the rows, that is,
~AðtÞ½t; . . . ;n� :¼ Pt � AðtÞ½t; . . . ;n�. If aðtÞnt ¼ 0, then we do not perform row exchanges, that is, ~AðtÞ :¼ AðtÞ. If aðtÞtt – 0 and aðtÞnt – 0,

then d1 :¼ det AðtÞ½t; t þ 1�. If d1 > 0 (resp., d1 < 0), then ~AðtÞ :¼ AðtÞ (resp., ~AðtÞ½t; . . . ;n� :¼ Pt � AðtÞ½t; . . . ;n�). If d1 ¼ 0, compute

the determinant d2 :¼ det AðtÞ½n� 1;njt; t þ 1�. If d2 > 0 (resp., d2 < 0), then ~AðtÞ :¼ AðtÞ (resp., ~AðtÞ½t; . . . ;n� :¼
Pt � AðtÞ½t; . . . ;n�). In all cases, the remaining rows of ~AðtÞ½t; . . . ;n� are placed in the same relative order they have in

AðtÞ½t; . . . ;n�. Observe that the computational cost of the two-determinantal pivoting strategy is at most 2n� 2 subtractions
and 4n� 4 multiplications.

3. Eigenvalue localization and NE for nonsingular SR and TP matrices

For a matrix A ¼ ðaijÞ16i;j6n, and for each i ¼ 1; . . . ;n, we denote the ith deleted row sum of the moduli of off-diagonal
entries of A by

riðAÞ :¼
Xn

j¼1;j–i

jaijj: ð5Þ

We shall also distinguish between the following two components of riðAÞ:

r�i ðAÞ :¼
X
j<i

jaijj; rþi ðAÞ :¼
X
j>i

jaijj:
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