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a b s t r a c t

The method of lines is well suited for solving numerically parabolic boundary-layer equa-
tions because it avoids the numerical difficulties associated to the integration of the con-
tinuity equation, which is subsumed into the momentum equations as an integral of the
main velocity component. To deal with these integrals, as well as with any other integral
operator entering the boundary layer equations in some particular problems, it is very effi-
cient to discretize the transversal coordinate using pseudospectral methods. The resulting
ordinary differential equations (ODEs) can be then written in a very compact form, suitable
for general-purpose methods and software developed for the numerical integration of
ODEs. We present here such a numerical method applied to the boundary-layer equations
governing the mixed convection over a heated horizontal plate. These parabolic equation
can be written in such a way that the natural convection appears as an integro-differential
term in the usual horizontal momentum equation, so that the discretization by pseudo-
spectral methods of the vertical coordinate derivative is very appropriate. Several Matlab
based solvers are compared to integrate the resulting ODEs. To validate the numerical
results they are compared with analytic solutions valid near the leading edge of the bound-
ary-layer.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider here the boundary-layer equations for the mixed-convection flow above a horizontal plate (see, e.g., [1,2]). In
dimensionless form, after eliminating the pressure by cross-differentiation of the horizontal and the vertical momentum
equations, integrating the resulting momentum equation across the boundary layer and using the boundary conditions,
can be written as
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In these equations the dimensionless coordinate x parallel to the plate is made dimensionless with the length

L ¼ U5
1=½gbðTw � T1Þ�2m which depends on the velocity U1 of the free stream, the acceleration due to gravity g, the thermal

expansivity b, the kinematic viscosity m and the difference between the plate temperature Tw and the temperature T1 of the
undisturbed fluid (Tw � T1 will be assumed positive). The dimensionless coordinate y perpendicular to the plate is scaled
with L=

ffiffiffiffiffiffi
Re
p

, where Re ¼ U1L=m is the Reynolds number. The velocity components u and v, parallel and perpendicular to
the plate, are scaled with U1 and U1=

ffiffiffiffiffiffi
Re
p

, respectively. h is the difference between the fluid temperature and the temper-
ature of the undisturbed fluid divided by Tw � T1. The last term in the horizontal momentum equation (2) represents the
buoyancy effects induced by the temperature difference h when the Boussinesq approximation is used, which is written here
as an integro-differential term once the horizontal pressure gradient is transformed by using the vertical momentum equa-
tion after the operations commented on above. The Prandtl number Pr ¼ m=a, with a the thermal diffusivity, is the only non-
dimensional parameter in the problem. The boundary conditions for (1)–(3) are:

uðx;0Þ ¼ vðx;0Þ ¼ 0; hðx;0Þ ¼ 1; x > 0; ð4Þ

uðx;1Þ ¼ 1; hðx;1Þ ¼ 0; x > 0; ð5Þ

uð0; yÞ ¼ 1; hð0; yÞ ¼ 0; y > 0: ð6Þ

The problem thus defined constitutes a parabolic system of integro-differential equations which can be integrated
numerically starting from the ‘initial’ conditions (6) at x ¼ 0 and advancing in the x–direction by using different numerical
methods (see, e.g., [3,4]). One of the main numerical difficulties encountered in these methods is the computation of v at
each x–step from the continuity Eq. (1), which poses some numerical stability problems (see, e.g., [5]). A way to circumvent
these difficulties is to substitute v in (2) and (3) directly from the integration of (1) with the boundary condition (4) for v,
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and solve these equations using a method of lines. Since these equations contain both differential and integral operators in
the coordinate y, in general one has to use quite different numerical techniques to discretize them in the implementation of
the method of lines. We show here that a very accurate and efficient way for discretizing these derivatives and integrals in y,
very appropriate for the method of lines, is by using a Chebyshev pseudospectral collocation method. Both differential and
integral terms are discretized in a similar fashion, with spectral accuracy, and the resulting system of coupled ordinary dif-
ferential equations (ODEs) can be written in a very compact form, appropriate to be solved using, for instance, standard Mat-
lab based numerical codes.

The details of the numerical method are described in the next section, and in Section 3 we check its accuracy and effi-
ciency by comparing the numerical results with an analytical solution valid near x ¼ 0. Some conclusions are drawn in
the last section.

2. Numerical method

We describe here a semidiscrete method for solving (7) and (8) obtained by discretizing these equations with respect to y
using the Chebyshev pseudospectral (CPS) collocation method. To that end we first define

uiðxÞ ¼ uðx; yiÞ; hiðxÞ ¼ hðx; yiÞ; i ¼ 0;1;2; . . . ;N; ð9Þ

where the N þ 1 yi points are the transformed of the collocation points defined in ½�1;1�,

si ¼ cos
ip
N
; i ¼ 0;1;2; . . . ;N; ð10Þ

into the interval 0 6 y <1 of the boundary layer by means of an appropriate transformation. For instance [6],

yi ¼
að1þ siÞ

b� si
; i ¼ 0;1;2; . . . ;N; ð11Þ

which transforms the points si into the interval 0 6 y 6 ymax when b ¼ 1þ a=ymax, in such a way that the nodes are concen-
trated near the wall, where the gradients of the fluid properties are larger than far from the wall (with this transformation,
approximately half of the nodes lie in y 6 a). The boundary conditions as y ! 1 are thus applied at a truncated height ymax

(corresponding to i ¼ 0), which is selected large enough to ensure that the results do not depend on that truncated distance
by trying increasing ymax and comparing the results. Its value in the present problem would depend on how far one needs to
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