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a b s t r a c t

Many predator–prey systems with oscillatory behavior possess a unique limit cycle which
is globally asymptotically stable. For a class of general predator–prey system, we show that
the solution orbit of the limit cycle exhibits the temporal pattern of a relaxation oscillator,
when a certain parameter is small.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

With the wide applications in the natural world, the predator–prey systems has been one of the important topics in ecol-
ogy and mathematical biology. Along with the development of modern mathematics, the predator–prey systems have been
by using qualitative analysis and stability theory. For the research of limit cycles, in 1975 Freedman and Waltman [4,5] used
various techniques for establishing the existence of limit cycles. In 1981 Cheng [3] (see also Liou and Cheng [14]) published a
result giving a criterion for the uniqueness of limit cycles for a special class of predator–prey models. In 1950’s, Zhang proved
a uniqueness theorem of limit cycles of generalized Liénard equations, which was later recorded in [25] in 1986. Zhang’s
result was used by Kuang and Freedman [13] to consider a Gause type predator–prey system:

_x ¼ xgðxÞ � nðyÞpðxÞ;
_y ¼ gðyÞ �cþ qðxÞð Þ:

�
in [13], they converted this predator–prey model to a Liénard equation, then showed that the new model satisfies the con-
ditions in [25], consequently proved the uniqueness of limit cycle of this predator–prey system. Models of this type were
introduced by Gause et al. [6], and since then, variations of this model have been utilized in Armstrong [1], Hassell [7],
Hassell and May [10], and Rosenzweig [19], Alberecht et al. [2], May [16], Rosenzweig [18].

In 2009, Hsu and Shi [11] studied a predator–prey system in the particular form:

du
dt ¼ uð1� uÞ � muv

aþu ;

dv
dt ¼ �dv þ muv

aþu ;

(
ð1:1Þ
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where a; m; d > 0. The system (1.1) is often called Rosenzweig–MacArthur predator–prey system from the seminar work of
Rosenzweig and MacArthur [20]. Hsu and Shi [11] considered the relaxation oscillator profile of the limit cycle of (1.1) by a
careful phase portrait analysis and estimates. It is important to know whether such profile is special only to (1.1) or it holds
for a more general class of predator–prey systems. Hence the objective of this paper is to study the dynamical properties of a
general predator–prey systems, in particular, the asymptotic behavior of the limit cycle.

In this paper, we consider a class of more general predator–prey systems in the form

du
dt ¼ ugðuÞ � vpðuÞ;
dv
dt ¼ v �dþ pðuÞð Þ;
uð0Þ � 0; vð0Þ � 0;

8><
>: ð1:2Þ

where d > 0, the functions gðuÞ and pðuÞ are sufficiently smooth so that the existence, uniqueness, and continuous depen-
dence on parameters of solutions to the initial-value problem are satisfied. The functions uðtÞ and vðtÞ represent the prey
and predator populations, respectively, at a given time t P 0. In this paper, we assume that the functions gðuÞ and pðuÞ in
(1.2) satisfy

(H1): g 2 C2ðRþÞ; gð0Þ > 0, there exists k > 0, such that for any u > 0; u – k; gðuÞðu� kÞ < 0 and gðkÞ ¼ 0.
(H2): p 2 C2ðRþÞ; pð0Þ ¼ 0; p0ðuÞ > 0 for any u P 0, and there exists a 2 ð0; kÞ such that pðaÞ ¼ d.

(H3): Define FðuÞ ¼ ugðuÞ
pðuÞ if u > 0 and Fð0Þ ¼ gð0Þ

p0 ð0Þ. Then F 2 C2ðRþÞ. We assume there exists a� 2 ð0; kÞ, such that for any
u > 0; u – a�; F 0ðuÞðu� a�Þ < 0 and F 0ða�Þ ¼ 0.

It is known that (see Hsu [8]) if (H1)–(H3) are satisfied, then (1.2) possesses a unique coexistence equilibrium point
ða; FðaÞÞ. The local stability of ða; FðaÞÞ depends on the sign of F 0ðaÞ: when a� < a < k, then F 0ðaÞ < 0 and ða; FðaÞÞ is locally
asymptotically stable; and when 0 < a < a�, then F 0ðaÞ > 0 and ða; FðaÞÞ is unstable. Moreover the global stability of
ða; FðaÞÞ when a� < a < k can be established through a Lyapunov functional or Dulac criterion under some extra conditions
(see [8,9]). On the other hand, when 0 < a < a�, the instability of ða; FðaÞÞ implies the existence of a periodic orbit from the
Poincaré–Bendixon theory. The uniqueness of the periodic orbit will make the periodic orbit a limit cycle—the attractor for
the predator–prey system. Since the work of Cheng [3], the uniqueness of the limit cycle in (1.2) has been proved under some
extra conditions [12,24]. Here we site a result of Kuang and Freedman [13]: if (H1)–(H3) are satisfied, and also

(H4): for all 0 6 u 6 k; u – a, we have d
du

pðuÞF0 ðuÞ
�dþpðuÞ

� �
6 0,

then the limit cycle of (1.2) is unique and is global asymptotically orbital stable. Moreover, we can verify the uniqueness of
limit cycle holds if (H1)–(H3) are satisfied, and also

(H4)0: F 2 C3ðRþÞ, and uF 000ðuÞ þ 2F 00ðuÞ 6 0 for 0 6 u 6 k,

which can be obtained from results in [22,23].
We also recall that the growth rate of the prey is of logistic type if gðuÞ is strictly decreasing, and it is of weak Allee effect

type if gðuÞ is increasing for 0 < u < c and is decreasing for c < u < k. Conditions (H1) and (H3) allow for either type of
growth. For example, gðuÞ ¼ k� u is a logistic growth; for gðuÞ ¼ ðk� uÞðuþ aÞ, it is weak Allee effect type when
0 6 a < k, and it is logistic type when a > k. Some examples of pðuÞ are Holling type II functional response
pðuÞ ¼ mu=ðbþ uÞ, or Ivlev type as pðuÞ ¼ mð1� e�buÞ.

Our result here generalizes the one in [11], in which the relaxation oscillation profile of the limit cycle in a predator–prey
model was first studied. An earlier work for relaxation oscillator in predator–prey model appeared in [15]. For many other
mathematical models with limit cycle behavior and small parameters, such relaxation oscillation have been well-docu-
mented in, for example, [17,21]. For such relaxation oscillation profile, the prey population uðtÞ is near zero for a very long
period when d is small (see Figs. 2 and 3 for illustration). Biologically this means the prey population is vulnerable to extinc-
tion even with small stochastic perturbations.

We prove our main results in Section 2 for the case d! 0. We will use di and Ci, (i 2 N), to denote various positive con-
stants. These constants are independent of d in Section 2. We give an example and some numerical simulations to illustrate
our results in Section 3.

2. Asymptotic behavior of the limit cycle for d small

In this section, we consider the asymptotical profile of the limit cycle of (1.2). We assume that 0 < a < a� and the condi-
tions (H1)–(H4) (or (H1)–(H4)0) hold. We define

f ðu; vÞ ¼ ugðuÞ � vpðuÞ; gðu;vÞ ¼ v �dþ pðuÞð Þ: ð2:1Þ
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