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a b s t r a c t

In this paper, we present a numerical method to calculate the basic reproductive number,
commonly denoted as R0, for a class of compartmental epidemiological models in nonho-
mogeneous environments. We focus our attention on time-periodic models that incorpo-
rate seasonal variation and heterogeneity into disease dynamics. Our numerical
algorithm is based on a procedure that efficiently transforms the operator eigenvalue prob-
lem into a matrix eigenvalue problem. In addition to time-periodic ODE models, the pro-
posed computational approach can also be applied to spatially heterogeneous epidemic
models represented by reaction–diffusion PDE systems. We present several examples to
demonstrate the validity and application of this algorithm, and we compare the method
with existing approaches for the calculation of R0.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models for infectious diseases play an important role in understanding basic disease mechanisms, and have
long provided useful guidelines for preventing and controlling disease outbreaks. A fundamental concept in epidemiology is
the basic reproductive number, commonly denoted as R0, which measures the average number of secondary infections that
occur when one infective is introduced into a completely susceptible host population. Many mathematical epidemiological
models exhibit threshold dynamics characterized by the basic reproductive number: a disease will die out if R0 is lower than
unity, while an epidemic will occur if R0 exceeds unity. This theoretical principle has been extensively applied to measure the
effectiveness of vaccination strategy and antibiotic treatment, to estimate the likelihood of eradicating a disease, and to
guide public health administrations to properly scale their efforts [14].

In this study, we are concerned with compartmental epidemiological models formulated by systems of differential equa-
tions. These systems typically have several parameters that appear as coefficients in front of model variables, representing
various rates related to disease transmission, such as the contact rate, recovery rate, pathogen growth rate, and disease
caused death rate. Most existing epidemiological models assume that these parameters are constants and that all population
sets are uniformly mixed; i.e., under a homogeneous setting. Such an assumption of homogeneity results in simplified,
autonomous ordinary differential equation (ODE) systems that allow detailed mathematical analysis on stabilities and bifur-
cations. In particular, the basic reproduction number R0 has been established as a sharp threshold for disease dynamics in a
large class of these models (see review [14] and references therein). Meanwhile, calculation of R0 using the theory of next
generation matrices, developed by van den Driessche and Watmough [23] and Diekmann et al. [10], has been widely
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accepted and regarded as standard framework in mathematical epidemiology. No doubt these studies are valuable and
inspiring. However, disease transmission mechanisms are usually more complex than described by autonomous model sys-
tems. Particularly, seasonal variations and climatic events cause periodic fluctuation of the contact and exposure rates, path-
ogen growth/death rates, etc., which in turn have strong impacts on disease dynamics. To better reflect such periodic
epidemic oscillations, related model parameters could be periodic functions of time instead of simply being constants. Such
epidemic models with time-periodic parameters can deepen our understanding of the complex disease mechanism and
potentially provide more useful guidelines for public health administration.

Currently, mathematical analysis of periodic epidemic models, especially the study of threshold dynamics, remains a
challenge [1], and there have been relatively few studies devoted to this direction. Moneim and Greenhalgh [17] derived
an upper bound and a lower bound for R0 in a periodic epidemic model with vaccination. Wesley and Allen [26] showed that
for some epidemic models with periodic coefficients and constant population size, the time-averaged basic reproduction
number is a threshold for disease extinction. The authors of [16] analyzed the threshold dynamics for some periodic SEIR
(Susceptible-Exposed-Infectious-Recovered) models using the long-term averaged system. Other related work includes
[2,6,9,27]. We note that many of these studies are concerned with relatively simple systems where useful information of
the solutions can be obtained through direct integration, and it could be difficult to extend the analysis to general model
systems of non-autonomous equations. Recently, Wang and Zhao [24] investigated threshold dynamics for a wider range
of epidemic models in periodic environments and developed a general framework for determining R0. Their approach is
based on a rigorous functional analysis on a Banach space and R0 is defined as the spectral radius of the next infection oper-
ator (see Appendix A for a summary). Through several examples, the authors in [24] demonstrated that this R0 gives a shar-
per threshold than the basic reproduction number of the time-averaged autonomous system, as the latter might
underestimate or overestimate the infection risks. With a focus on mathematical analysis, however, the work of [24] did
not provide an explicit way to compute R0. In addition, Bacaër and coworkers [3–5] proposed another definition of R0 for
a class of periodic epidemic models and presented several methods to calculate it. It was also observed in their studies that
the time-averaged reproduction number inaccurately predict disease risks.

In the present paper, we describe a new and efficient numerical algorithm to calculate the value of R0 for a class of epi-
demiological models in nonhomogeneous environments. We focus our attention on time-periodic models and make use of
the fundamental formula established in [24]. Our numerical method is based on a procedure that transforms the operator
eigenvalue problem into a matrix eigenvalue problem; the method is natural and easy for implementation. This approach
will enable practical evaluation of the basic reproduction numbers and, consequently, threshold determination, for various
periodic epidemiological models. We use several examples to demonstrate the application of the proposed method. We also
make comparison with existing numerical approaches to validate our method.

In addition to the time-periodic ODE models, we will also use an example to illustrate the application of our approach to
epidemic models in a spatially heterogeneous setting (another type of nonhomogeneous environments). We present a new
PDE model for cholera dynamics which is based on a reaction–diffusion system, taking into account the spatial movement of
human hosts and pathogens. We then compute the basic reproduction number of this PDE model using a similar procedure
of reducing an operator eigenvalue problem to a matrix eigenvalue problem. To our knowledge, rigorous definition and anal-
ysis of the basic reproduction number for a reaction–diffusion PDE epidemic model only appear in a very recent study [25]
published in 2012, and our numerical approach will be first of its kind in providing a systematical way to compute R0 for such
nonhomogeneous epidemiological models.

2. The method

We now describe the numerical procedure in the context of time-periodic epidemiological models. In the well-
known work of van den Driessche and Watmough [23], a general approach based on the next-generation matrix is
proposed to compute the basic reproduction number R0 for autonomous ODE models. Wang and Zhao [24] extended
this framework to a large class of epidemic models in periodic environments; a brief review of their work is provided
in Appendix A.

Consider a compartmental epidemic model dxi
dt ¼ fiðt; xÞ with fiðt; xÞ ¼ fiðt þx; xÞ for some x > 0, 1 6 i 6 J. Let m be the

dimension of the subsystem that includes all the infected compartments. Essentially, the authors in [24] introduced the next
infection operator

ðL/ÞðtÞ ¼
Z 1

0
Yðt; t � sÞFðt � sÞ/ðt � sÞds; ð1Þ

where Yðt; sÞ is the evolution operator of the linear x-periodic system dy=dt ¼ �VðtÞy, FðtÞ and VðtÞ are the next-generation
matrices associated with the epidemic system, and /ðtÞP 0 is a x-periodic function representing the initial distribution of
the infectious individuals (see Appendix A for details). It is assumed that FðtÞ and VðtÞ are continuous and x-periodic func-
tions of t, FðtÞ is an m�m non-negative matrix, and �VðtÞ is an m�m cooperative matrix. The basic reproduction number is
then defined as the spectral radius of L; i.e.,

R0 ¼ qðLÞ: ð2Þ
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