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a b s t r a c t

The normwise condition number and two kinds of backward errors are considered when
nonsymmetric algebraic Riccati equation (NARE) has the minimal nonnegative solution.
Based on the techniques for the symmetric case, we apply the condition number theory
developed by Rice to define condition number for NARE. The explicit expression is derived
in a uniform manner. Meanwhile, two kinds of backward errors are defined and evaluated
by the explicit formulas. Numerical experiments are listed to illustrate and compare the
practical performance.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider nonsymmetric algebraic Riccati equation (NARE)

XCX � XD� AX þ B ¼ 0; ð1:1Þ

where A; B; C; D are real matrices of sizes m�m; m� n; n�m; n� n, respectively, and solution X 2 Rm�n. NARE (1.1) has
many applications in transport theory and Markov models [4,13]. The solution of practical interest is the minimal nonneg-
ative solution. So we assume that

K ¼
D �C

�B A

� �
ð1:2Þ

is a nonsingular M-matrix to guarantee NARE (1.1) has the minimal nonnegative solution. The numerical algorithm of NARE
(1.1) has attracted some authors’ attention. Theory and numerical methods of nonsymmetric algebraic Riccati equation are
well developed [3,1,2,4–6,8,10,11,26]. In particular, structure-preserving doubling algorithm [11,9,14,16] is a very efficient
algorithm. For these algorithms details, please refer to the references therein.

Our interest here is to discuss the perturbation analysis of NARE (1.1). As is known perturbation analysis contains forward
perturbation analysis and backward perturbation analysis. The purpose of forward perturbation is to ascertain the stability of
an equation or a problem itself. The result of the forward perturbation analysis may be a perturbation bound, or a condition
number, or a perturbation expansion. The back perturbation analysis is to test the stability of a computation or an algorithm,
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and ascertain the accuracy of an approximate solution. The result of backward perturbation analysis may be a backward
error or a residual. For more details about perturbation theory, please refer to Higham [12] and Sun [19].

For algebraic Riccati equation some perturbation analysis results have been achieved, such as symmetric algebraic Riccati
equation [26,29], discrete-time Riccati equation [20–22,15,23,24]. The study of perturbation analysis of NARE (1.1) was
developed by Xu [26]. He presented the perturbation bound and the residual bound of NARE (1.1). Guo and Bai [10] discussed
the perturbation bound and structured condition number about the minimal nonnegative solution of NARE (1.1). Recently
some authors researched on the mixed and componentwise condition numbers of algebraic Riccati equation. For example,
Zhou et al. [29] discussed symmetric algebraic Riccati equation, and Liu [17] discussed nonsymmetric algebraic Riccati equa-
tion. Xue et al. [28,27] considered the relative perturbation theory and its entrywise relatively accurate numerical solutions
of M-matrix algebraic Riccati equations and M-matrix Sylvester equations.

The purpose of this paper is to evaluate the condition number and backward error of a minimal nonnegative solution to
NARE (1.1). Condition number of NARE (1.1), as the measure of the sensitivity for the minimal nonnegative solution to small
changes in the coefficient matrices, plays a key role in the perturbation theory. We will apply the condition number theory
developed by Rice [18] to define condition number of NARE (1.1), and derive an explicit expression of condition number in a
uniform manner.

Backward error is an important concept proposed by Wilkinson [25] in the 1960s. Now it becomes one of the basic tools
to evaluate the quality of the calculated solution. This paper will discuss two kinds of backward errors of NARE (1.1) and
derive their corresponding explicit expressions. This research is greatly influenced by Sun [23].

Throughout this paper we will use the following notations:

k � kF Frobenius norm
k � k the operator norm induced by the Frobenius norm in an associated matrix space
k � k2 Euclidean vector norm
vec vectorization operator, which stacks the columns of a matrix one under another
� Kronecker product
� Hadamard product
I identity matrix with the size determined by the context
X Rm�m � Rm�n � Rn�m � Rn�n

rðA;B;C;DÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAk2

F þ kBk
2
F þ kCk

2
F þ kDk

2
F

q

This paper is organized as follows. In Section 2 some preliminary results are given. In Section 3 we define the condition
number for the minimal nonnegative solution of NARE (1.1) and obtain a calculable explicit expression. In Section 4 two
kinds of backward errors are defined, meanwhile the computable explicit expressions are given. In Section 5 the results
are illustrated by some numerical examples.

2. Preliminaries

In this section we give some preliminary results. Lemma 1 [7] and Lemma 2 [26] are introduced.

Lemma 1. Let K be a nonsingular M-matrix, then NARE (1.1) has a minimal nonnegative solution X, such that

DC ¼ D� CX ð2:1Þ

and

AC ¼ A� XC ð2:2Þ

are all nonsingular M-matrices.

Lemma 2. Let the map f : Rn ! Rm be resolved into

f ðxÞ ¼ uðxÞ þ gðxÞ;

where x 2 Rn. Assume that

(1) f ðxÞ; uðxÞ; gðxÞ are continuous,
(2) uðaxÞ ¼ auðxÞ; a 2 Rþ; 8x 2 Rn ,
(3) limkxk!0

kgðxÞk
kxk ¼ 0.

Then for an arbitrary given vector p ¼ ðe1; e2; . . . ; enÞT , here ei > 0 ði ¼ 1;2; . . . ;nÞ, it holds that
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