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Keywords: In this paper, we study the dynamics of blow-up solutions for the nonlinear inhomoge-
Nonlinear inhomogeneous Schrédinger neous Schrodinger equation. Firstly, we show the lower blow-up rate of blow-up solutions
equation ) by rescaling technique, and use it to get the rate of mass concentration of blow-up solu-
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blow-up rate by the variational methods. Finally, we investigate the limiting profile of min-
imal mass blow-up solutions.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the Cauchy problem of the following nonlinear inhomogeneous Schrédinger equation
iu+ au+ XU Tu=0, t>0, xeRY, (1.1)

u(0,X) = U, (1.2)

where i is the imaginary unit; A = ZJ’L % is the Laplace operator in R"; u = u(t,x): [0,T) x RN — C is the complex valued
j

function and 0 < T < +o0; N is the space dimension; the parameter b > 0. A few years ago, it was suggested that stable high
power propagation can be achieved in plasma by sending a preliminary laser beam that creates a channel with a reduced
electron density, and thus reduces the nonlinearity inside the channel (see [5,7]). In this case, beam propagation can be mod-
eled by the nonlinear inhomogeneous Schrédinger equation in the following form

i+ 00 +KX)|P"'d=0, ¢(0,X) = @q. (13)

Recently, this type of nonlinear inhomogeneous Schrédinger equations has been widely investigated. When k; < K(x) < k
with k; >0, k; >0 and p=1+4, Merle [12] proved the existence and nonexistence of blow-up solutions of the Cauchy
problem (1.3). When K(x) = K(&[x|) € C*(RV) N L*(RN) with ¢ small and p =1+ £, Liu, Wang and Wang [8] studied the
stability and instability of standing waves of (1.3).

For the nonlinearity with unbounded potential \x\b, Chen and Guo [3] established the local well-posedness of the Cauchy
problem (1.1),(1.2) in H! = H}(R"), where H} (R) is the set of radial symmetric functions in H' (R"). Chen and Guo [3], Chen
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[4] studied the existence of blow-up solutions. Due to the unbounded potential \x\”, to our knowledge, there are few results
about blow-up solutions for Cauchy problem (1.1),(1.2), which motivates us to do further research on the dynamics of blow-
up solutions for the Cauchy problem (1.1),(1.2).

In fact, Eq. (1.1) is called L? critical due to the L? norm of u(t,x) and the Eq. (1.1) itself are invariant under the rescaling
symmetry v’ — Agu(),2 t, 7x). Now, we recall some known results about the Cauchy problem of the homogeneous Schrédinger
equation with L? critical nonlinearity

W+ AW+ (WY =0, ¥(0,X) = Y. (1.4)

Ginibre and Velo [6] established the local well-posedness in H' = H'(R"). In this space energy arguments apply, and a blow-
up theory has been developed in the last two decades (see [2,10,17] and the references therein). This theory is connected to
the notion of ground state: the unique positive radial symmetric solution of the elliptic problem

2Q-Q+[QfQ=0, QeH"
Weinstein [19] established the following sharp Gagliardo-Nirenberg inequality:

4
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Then, Weinstein [19] obtained the sharp threshold of blow-up and global existence of the Cauchy problem (1.4). Moreover,
using the sharp Gagliardo-Nirenberg inequality (1.5), Weinstein [20] studied the structure and formation of singularities of
blow-up solutions. Merle and Tsutsumi [13,18](for radial data) and Nawa [14] and Weinstein [21](for general data) studied
the mass concentration of blow-up solutions. Merle [9] constructed the explicit blow-up solution with critical mass by the
conformal invariance and compactness results. Recently, Merle and Raphaél [10,11] obtained a large body of breakthrough
work on blow-up solutions, including sharp blow-up rate, profile of blow-up solutions and etc.

In the present paper, we study the dynamics of blow-up solutions for the Cauchy problem (1.1),(1.2). Firstly, we consider
the ground state solution of Eq. (1.1), which is a special class of periodic solutions of Eq. (1.1) in the form u(t, x) = e“tR(x),
where w € R (for simplify, we take o = 2:2) and R(x) satisfies

—AR—&-b%zR—\xF’\R\%R:O, ReH}. (1.6)
The minimal energy solution R(x) of (1.6) is called the ground state solution (see [2,4]), and the general solution of (1.6) is
called the bound state solution. Sintzoff and Willem [15] proved the existence of bound state solutions of (1.6). Chen [4]
studied the existence of the ground state solution of (1.6), and gave a sharp generalized Gagliardo-Nirenberg inequality.
Then, Chen [4] obtained the sharp threshold of blow-up and global existence for Cauchy problem (1.1),(1.2). It reads that
if the initial data ||uo||,> < ||R]|2, then the solution u(t,x) exists globally; if the initial data |luo||;> > ||R|2, then the solution
u(t,x) may blow up, which implies that |[R]|,> is the minimal mass of the existence of blow-up solutions. In this paper, we
further study the dynamical properties of blow-up solutions of the Cauchy problem (1.1),(1.2) around R(x). Firstly, we obtain
the lower blow-up rate by rescaling technique and the local well-posedness. Secondly, in terms of Merle and Tsutsumi’s
arguments [13], we obtain the rate of mass concentration of blow-up solutions, as follows.

Theorem 1.1. Let N >3,0<b<2(N—1) and uy € H! be radial symmetric. Assume that u(t,x) e C([0,T);H}) is the
corresponding blow-up solution of the Cauchy problem (1.1),(1.2).

(i) If a(t) is decreasing from [0, T) to R* such that lim; ra(t) = 0 and lim, . ¥T5t = 0, then

liminf lu(t,x)dx > / R|dx. (1.7)
=T Jixi<a
(ii) For any ¢ > O,there exists a constant K > 0 such that
lim inf u(t,x)Pdx > (1-¢) / IR[2dx, (1.8)

K
K<7=

where R is the ground state solution of (1.6).
Finally, applying the mass concentration of blow-up solutions for the Cauchy problem (1.1),(1.2), we investigate the sharp
lower blow-up rate and the limiting profile of blow-up solutions with minimal mass, and obtain the following theorem.

Theorem 1.2. Let N >3, 0< b <2(N—1) and ug € H} satisfies |[uo|,> = |[R||;>. Assume that u(t,x) € C([0,T);H}) is the
corresponding blow-up solution of the Cauchy problem (1.1),(1.2).

(i) If |x|ug € L*(RY), then there exists a constant C > O such that

C
IVu(©)z > 37— Vtel0.T). (1.9)
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