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a b s t r a c t

We propose an improved moving least-squares Ritz (IMLS-Ritz) method with its element-
free framework developed for studying two-dimensional elasticity problems. Using the
IMLS approximation for the field variables, the discretized governing equations of the prob-
lem are derived via the Ritz procedure. In the IMLS, an orthogonal function system with a
weight function is employed as the basis for construction of its displacement field. By using
the element-free IMLS-Ritz method, solutions of the two-dimensional elasticity problems
are obtained. The applicability of the element-free IMLS-Ritz method is illustrated through
three selected example problems. The convergence characteristics of the method are exam-
ined by varying the number of nodes and geometric parameters of these examples. The
accuracy of the method is validated by comparing the computed results with the EFG
and exact solutions.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The element-free or mesh-free methods have been extensively researched because of its important application for solving
mathematical and physical problems [1–10]; especially when the traditional computational methods are not well suited for
such problems that involved extremely large deformation, dynamic fracturing or explosion problems [11]. Based on different
approximation functions, various element-free or mesh-free methods were proposed, including the element-free Galerkin
method [12], the hp clouds method [13], the moving least-squares differential quadrature method [14,15], the reproducing
kernel particle method [16], wavelet particle method [17], the radial point interpolation method [18–20], the complex var-
iable meshless method [21,22] and the meshless boundary integral equation methods [23,24].

Over centuries the Rayleigh method [25], a long-existed element-free technique, was used to approximate solutions for
vibration problems. The Rayleigh method considers a resonant vibrating system completely interchanges its kinetic and
potential energy forms. It needs to assume a trial function for the mode shape which satisfies at least the geometric bound-
ary conditions, and upon equating the maximum kinetic and potential energies, yields an upper bound frequency solution.
The Ritz method [26] improves the Rayleigh approximation by assuming a set of admissible trial functions, each of which
possesses an independent amplitude coefficient. By minimizing the energy functional with respect to each of these coeffi-
cients, a more accurate upper bound solution has been achieved. The accuracy of the Ritz method is highly dependent upon
its trial functions. Some notable works involved the development of the trail functions were reported by Leissa [27], Liew
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et al. [28], Cheung and Zhou [29,30], Lim and Liew [31], Liew and Feng [32], and Liew and Yang [33]. The element-free kp-
Ritz method was also proposed for studying engineering problems [34–36].

The moving least-squares (MLS) approximation can be used in the element-free method to overcome the re-entrant cor-
ners or stress singularity problems. A limitation of the MLS approximation is that the resulting algebraic equations system
may sometime be ill-conditioned. In this case, there are no mathematical methods that can be used to judge if an algebra
equations system is ill-conditioned before it is solved. Therefore an accurate solution sometimes may not be obtained or cor-
rectly obtained. The use of the improved moving least-squares (IMLS) approximation for construction of trail functions can
overcome this drawback [37–42]. In the IMLS, the orthogonal function system with a weight function is used as the basis for
the displacement field. The resulting algebraic equation system in the IMLS approximation is not ill-conditioned, and can be
solved without involving the matrix inversion. In this paper, we explore the advantage of the IMLS along with the Ritz meth-
odology and develop its element-free framework for solving the two dimensional elasticity problems, leading to this
improved moving least-squares Ritz (IMLS-Ritz) method being proposed. The IMLS-Ritz method enforces essential boundary
conditions through the penalty method. A few selected numerical examples are solved using the IMLS-Ritz method. Conver-
gence studies are conducted in order to demonstrate the applicability and accuracy of the element-free IMLS-Ritz method.

2. Energy formulation for two-dimensional elasticity problems

Consider the following two-dimensional elasticity problem in the form

r � rþ b ¼ 0; in X; ð1Þ

where r denotes the divergence operator, r is the stress tensor, b is the body force and X is the problem domain.
The boundary conditions are

uðx1; x2Þ ¼ ~uðx1; x2Þ; ðx1; x2Þ 2 C1; ð2Þ

tðx1; x2Þ ¼ rðx1; x2Þ � n ¼ ~tðx1; x2Þ; ðx1; x2Þ 2 C2; ð3Þ

where u(x1,x2) is the displacement vector, ~uðx1; x2Þ denotes the prescribed displacement vector on the displacement bound-
ary C1, t(x1, x2) is the traction vector, ~tðx1; x2Þ denotes the prescribed traction vector on the traction boundary C2, and n is the
unit outward normal to the boundary C (C = C1 [ C2).

The strain energy for the two-dimensional elasticity problems is

F ¼ 1
2

Z
X
rTedX; ð4Þ

where e denotes the strain.
The external work is

L ¼ LX þ LC ¼
Z

X
bTudXþ

Z
C2

tTudC: ð5Þ

From Eqs. (4) and (5), the total energy functional becomes

Y
¼ F � L ¼ 1

2

Z
X
rTedX�

Z
X

bTudX�
Z

C2

tTudC: ð6Þ

For two-dimensional elasticity problems, the strain is given by

e ¼ ru; ð7Þ

and the stress–strain relationship is

r ¼ De; ð8Þ

where D is the matrix of material constants. For a plane strain problem, we have

D ¼ E
1� v2

1 v 0
v 1 0
0 0 1�v

2

2
64

3
75; ð9Þ

and for a plane stress problem, we have

D ¼ E
ð1þ vÞð1� 2vÞ

1� v v 0
v 1� v 0
0 0 1�2v

2

2
64

3
75; ð10Þ

where E is the Young’s modulus and v is the Poisson’s ratio.
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