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a b s t r a c t

In this work we develop an efficient shock capturing scheme of the TVD flux limiter family
for viscous and nonviscous conservation laws. The new flux limiter method is based on the
monotone FORWE scheme which is optimized by the inclusion of an appropriate switch
function. For the viscous case, a conservative formulation of the type viscous flux limiter
defined by Toro is used. Theoretical properties such as nonlinear stability and weak conver-
gence are proven using TVD-stability. An efficiency analysis of the method is achieved by
validating the numerical results with the analytical solutions of benchmark nonviscous and
viscous problems. We compare the switch flux limiter results with those obtained by some
of the well known flux limiter methods.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the scalar viscous conservation law

@uðx; tÞ
@t

þr � hðuðx; tÞÞ ¼ 0; x 2 X; t 2 ½0; T�; ð1Þ

uðx;0Þ ¼ u0ðxÞ;

where the physical flux is given by the Fourier–Fick’s law as follows

hðuÞ ¼ f ðuÞ � rlðuÞ; ð2Þ

with X a bounded domain such that, x 2 X # Rm;u ¼ uðx; tÞ a conservative scalar function with advective vectorial flux
f ¼ f ðuðx; tÞÞ and diffusion flux l ¼ lðuðx; tÞÞ with lðuÞP 0. These parabolic equations often arise in real-life applications
like front propagation, reservoir simulation in porous media, and so on [1,2]. If lðuÞ ¼ 0, Eq. (1) becomes the hyperbolic
problem

@uðx; tÞ
@t

þr � f ðuðx; tÞÞ ¼ 0; ð3Þ

which has discontinuous solutions. So the existence of classical solutions can not be guaranteed even for smooth initial con-
ditions. Let uðx; tÞ be a weak solution of the problem (3), then to achieve uniqueness of solution is required an entropy con-
dition like the one given by Volpert and Kružkov in [3,4]. Analogous difficulties appear for a viscous conservation law with
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l ¼ �, being � a small parameter or when l vanishes at a finite number of points. Therefore, we use a weak formulation of (1)
in the domain Xt :¼ X� ½0; T� and in order to achieve uniqueness, the weak solution must fulfill: (i) uðx; tÞ 2 BVðXtÞ

T
L1ðXtÞ

andrlðuÞ 2 L1
locðXtÞ and (ii) given u0 2 L1ðXtÞ, f andl 2 L1

locðXtÞ, for every scalar k and for every nonnegative test function w with
support in Xt ,Z

X

Z T

0
ju� kjwt þ sgnðu� kÞ½f ðuÞ � f ðkÞ � lðuÞx�wxdtdxþ

Z
X
ju0 � kjwðx;0ÞP 0;

which is called the BV entropy weak solution of the problem (1), see Wu and Yin’s work [5].
In the last decades, several high resolution flux-limiter schemes have been developed successfully capturing shock waves,

and used as base for ENO and WENO schemes providing nonoscillatory solutions for hyperbolic problems, [8–14]. On the
other hand, a numerical solution of the problem (1) and (2) is usually obtained by splitting techniques of the advection
and diffusion terms with an appropriate numerical method applied for each split-problem, see [6,7]. These operator splitting
methods are used with quite successful results for solving complex systems like the Navier–Stokes equations, see [15,16].
But in the case of viscous conservation laws with advection dominance, equation (1) recovers the dynamics of an hyperbolic
problem which has discontinuous solutions. For this reason, Evje and Karlsen in [17] considered monotone finite difference
schemes based on the conservative formulation of advection–diffusion Eqs. (1) and (2).

Using ideas from works of Evje et al. [17] and Toro [18], in this paper we develop a viscous flux limiter scheme based on
the shock capturing algorithm given in [19,20]. Also, as a step aimed at optimizing this flux limiter method we introduce: (i)
a new limiter function which is smoother than the one proposed in previous works and has important features for the TVD
stability analysis, and (ii) a switch function that selects appropriately between an upwind or a flux-limiter scheme. In par-
ticular, we analyze the behavior of the switch function in several numerical tests. Conditions for the nonlinear stability and
weak convergence are obtained for the proposed algorithm, which we name switch flux limiter method.

The paper is organized as follows: In Section 2, we construct the switch flux limiter method for conservation laws non-
viscous and viscous, and important theoretical properties such as total variation diminishing stability and weak convergence
are proven. In the following section, we extend the proposed method for bidimensional scalar conservation laws. Finally, for
the validation of the switch method we provide a rigorous simulation analysis with some examples of one and two spatial
dimensions. In all these tests, we compare the switch numerical error versus the error obtained from some of the most
important flux limiter methods.

2. Switch flux limiter method

In this section, we develop a viscous flux limiter for the scalar viscous conservation law (1) and (2). We consider the one
spatial dimension problem

utðx; tÞ þ hðuðx; tÞ;uxðx; tÞÞx ¼ 0; x 2 X #R; t 2 ½0; T� ð4Þ
uðx;0Þ ¼ u0ðxÞ;

where the physical flux is hðu;uxÞ ¼ f ðuÞ � lðuÞx. Moreover, we assume that there is a unique weak solution satisfying the BV
entropy conditions.

To approximate discontinuous solutions of (4) we propose algorithms type flux-limiter with a finite volume formulation.
For simplicity, we choose an uniform grid for the spatial-time domain and we define the mesh points ðxj; tnÞ with tn ¼ nðDtÞ
and xj ¼ x0 þ jðDxÞ for n; j 2 N, being a mesh cell Cn

j ¼ ðxj�1=2; xjþ1=2Þ � ðtn�1=2; tnþ1=2Þ. Then the numerical solution, denoted by
Uðx; tÞ, is defined as

Uðx; tÞ ¼
X1
n¼0

X
j

Un
j vn

j ; ð5Þ

where the approximation Un
j in each Cn

j is given by

Un
j ¼

1
jCn

j j

Z
Cn

j

Uðx; tnÞdx

and vn
j is the characteristic function of a mesh cell Cn

j . Then, a volume finite method that approximates an entropy weak solu-
tion of the problem (3) under a conservative formulation with an uniform rectangular mesh is given by

Unþ1
j ¼ Un

j � r Hjþ1=2 � Hj�1=2
� �

; ð6Þ

where r denotes the quotient ðDtÞ=ðDxÞ and

Hj�1=2 ¼ Fj�1=2 � Dj�1=2l; with Dj�1=2l ¼ �
lðUn

j�1Þ � lðUn
j Þ

Dx
; ð7Þ

being F the normal numerical advective flux to @Cn
j . For the definition of F, we use the monotone conservative method pro-

posed in [20] for the hyperbolic problem (3):
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