
A scalable pipelined architecture for real-time computation of MLP-BP
neural networks

Antony Savich ⇑, Medhat Moussa, Shawki Areibi
School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1

a r t i c l e i n f o

Article history:
Available online 13 January 2011

Keywords:
Field programmable gate arrays
Parallel computing
Artificial Neural Networks
Multi-layer perceptron
Scalability
Hardware accelerators
On-line learning

a b s t r a c t

In this paper a novel architecture for implementing multi-layer perceptron (MLP) neural networks on
field programmable gate arrays (FPGA) is presented. The architecture presents a new scalable design that
allows variable degrees of parallelism in order to achieve the best balance between performance and
FPGA resources usage. Performance is enhanced using a highly efficient pipelined design. Extensive anal-
ysis and simulations have been conducted on four standard benchmark problems. Results show that a
minimum performance boost of three orders of magnitude (O3) over software implementation is regu-
larly achieved. We report performance of 2–67 GCUPS for these simple problems, and performance reach-
ing over 1 TCUPS for larger networks and different single FPGA chips. To our knowledge, this is the
highest speed reported to date for any MLP network implementation on FPGAs.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning algorithms are techniques for automatically
building models of complex systems to discover patterns, and
make predictions about future events. They are increasingly used
in a large number of applications ranging from financial prediction
to on-line face recognition and medical image classification.

Some of the most commonly used machine learning algorithms
are Artificial Neural Networks (ANN). A recent business report [1]
has predicted that the market of software using ANN will reach
$4.5 billion sales with AAGR of 12.6% in 2007. ANN is now globally
recognized as the most effective and appropriate AI technology for
pattern recognition applicable in business forecasting, fraud detec-
tion, process modeling, data classification and analysis. Further-
more, developing ANN solutions that can operate in real-time
that use off-the-shelf chips could open the door for far more inte-
gration in embedded devices and real-time systems.

Multi-layer perceptron trained using the error back-propaga-
tion algorithm (MLP-BP) [2] is by far the most studied and used
ANN architecture. It has been used extensively in a wide variety
of applications. Yet using MLP-BP in real-time applications faces
several challenges. Training of an MLP-BP network is known to
be time consuming especially for large networks. This is com-
pounded by the lack of clear methodology in setting up the initial
topology and parameters. Topology has a significant impact on the
network’s computational ability to learn the target function and to

generalize from training patterns to new patterns. If the network
has too few free parameters (weights), training could fail to
achieve the required error threshold. On the other hand, if the net-
work has too many free parameters, then a large data set is needed.
In this case the possibility of over-fit is higher, which impacts gen-
eralization. It is typically not possible to experiment with a large
number of topologies because of the long training sessions re-
quired. As a result, heuristics have typically been used to speed
the training process while preventing over-fitting [3]. Yet even
with the use of heuristics, this training process is limited to open
loop learning or to applications where training data is static and
the problem domain unchanged for the duration of the network’s
useful function. However, when closed loop learning is necessary
or when the solution space is dynamic and new data is being added
continuously, there is a critical need for testing a wide range of
topologies in real-time. For example, real-time data mining of cus-
tomers’ databases that are continuously updated is a growing area
with significant commercial interest. As a result, developing special
hardware ANN accelerators continues to be an area of significant
research and commercial interest.

1.1. Previous approaches

Since ANNs are inherently parallel architectures, there have
been many efforts to explore parallel computing architectures for
implementing ANNs. These activities range from implementations
on general-purpose parallel computers to specialized hardware
dedicated to ANN simulations (neurocomputers). Examples in-
clude ANN simulations on Hypercube, connection machines, and

0141-9331/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2010.12.001

⇑ Corresponding author.
E-mail address: asavich@uoguelph.ca (A. Savich).

Microprocessors and Microsystems 36 (2012) 138–150

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://dx.doi.org/10.1016/j.micpro.2010.12.001
mailto:asavich@uoguelph.ca
http://dx.doi.org/10.1016/j.micpro.2010.12.001
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

other supercomputers [4–6]. Other groups have designed and built
parallel systems based on transputers [7], or digital signal proces-
sors (DSPs) [8]. Several companies have proposed Application Spe-
cific Integrated Circuits (ASICs) that act like ANN accelerators.
Examples include CNAPS [9], and Synapse-1 [10]. The reader can
refer to Nordstrom and Svensson [11] or Dias [12] for an overview
of these efforts. Most of these designs require using special hard-
ware boards or ASIC chips which limit their use on a large scale.
Furthermore, the simulated ANNs are constrained by size and type
of algorithm implemented.

A different approach that has gained considerable attention in
the last 10 years focuses on ANN implementation on configurable
platforms, and particularly Field Programmable Gate Arrays
(FPGAs) [13–18]. Commercial development of large, dense and
configurable FPGA chips has allowed implementations with more
flexibility of network size, type, topology, and other constraints
while maintaining increased processing density using the natural
parallel structure of ANNs. FPGAs compare favorably against other
emerging acceleration technologies like Clearspeed (www.clear-
speed.com) and CUDA (www.nvidia.com) since they are already
used extensively in a wide range of embedded applications and rel-
atively inexpensive. However, using FPGAs to implement ANNs,
and specifically MLP-BP, raises a number of design issues [19]. In
general, an MLP-BP implementation on an FPGA can be evaluated
in terms of:

1. Performance: in terms of number of connection updates pro-
cessed per second (CUPS) and in terms of convergence speed.

2. Resource utilization: in terms of FPGA resources used and its
proportion to total FPGA chip resources.

Every implementation is a tradeoff among these two factors.
High performance requires high degree of parallelism which re-
quires significant resources, while serial implementation requires
less resources but severely impacts performance. To achieve re-
source efficient implementation, some efforts have focused on
determining the most resource efficient arithmetic representation
format while maintaining adequate precision to achieve learning
[20,21]. Yet performance remained the main goal. Elridge et al.
[22] used Runtime Reconfiguration (RTR) to improve the hardware
density of FPGAs by dividing the BP algorithm into three sequen-
tially executed stages. The FPGA was configured to execute only
one stage at a time. The use of RTR enhanced processing density.
However this comes at a cost of deteriorating performance due
to the time needed to reconfigure the device.

More recently, Gadea et al. [17] described the implementation
of a systolic array for MLP. A pipelined modification of the on-line
back-propagation algorithm is presented where both the forward
and backward passes are processed in parallel thus achieving a
performance boost in training reported around 5 GCUPS. The mod-
ification itself requires circumventing some temporal properties of
the algorithm. This creates a marginal degradation in training con-
vergence but this performance level was previously unattainable
even when using custom neurocomputing platforms. Paul et al.
[23] also propose a similar systolic array architecture which
achieves 5 GOPS1 performance. But it is not clear how GOPS relate
to the more widely used CUPS metric. Both of these designs have sta-
tic relationships between network size and resource utilization,
where the resources needed are directly proportional to the size of
the network and its topology regardless of the FPGA available re-
source. This led Gadea et al. [17] to conclude that the resources re-
quired for implementing large scale networks make their design

impractical for current FPGAs regardless of performance achieved.
Aliaga et al. [18] presents another approach based on a multinode
co-processor embedded in an FPGA and controlled by an on-chip
CPU. Performance of about 700 MCUPS is achieved on a single chip,
combined with soft programmability features allowing this ap-
proach to implement large network. The inefficiencies of a software
controlled architecture do not allow this particular approach to pro-
duce substantial performance levels and does not provide a notable
speedup over software implementations.

Another issue that is often overlooked is the impact of the nat-
ure of the application on the resource utilization. Both the network
topology and the type of arithmetic format used in the implemen-
tation are impacted by this nature of the application. For example,
pattern classification problems can allow a higher error threshold
than function approximation problems since they basically pick a
one-of-N classes. That impacts the choice of the arithmetic repre-
sentation and, as such, the FPGA resources used in the implemen-
tation. This in turn could impact performance since large resource
utilization impacts the overall size of the network topology that
can be implemented in parallel and overall performance.

In this paper, we present a scalable architecture for implement-
ing MLP-BP on FPGAs. The objective is to balance between maxi-
mizing performance and minimizing resources utilized. This is
particularly critical for implementing ANNs as part of an embedded
system where an FPGAs is typically used to handle a wide range of
tasks. In these circumstances resource utilization is as important as
performance since the ANN implementation is likely to share the
FPGA resources with other tasks. The proposed architecture can
scale the ANN implementation to fit within the available resources
while achieving the highest possible performance. This built-in
balancing mechanism is consistent across a wide range of network
topologies and FPGA chips.

1.2. Contributions and organization

The most interesting feature of the novel architecture presented
in this paper is scalability. Scalability is implemented through using
variable degree of parallelism. An MLP-BP network is implemented
in a fully parallel design, that includes synapse and node parallel-
ism, to maximize performance when the resources available on the
FPGA allow that. When resources are limited, the implementation
uses a reduced degree of parallelism up to the point needed to fit
the network in the available resources while also achieving best
performance. This allows the architecture performance and re-
source utilization to scale up well for large as well as small net-
works. We are not aware of any other ANN architecture in
literature with such scalable design.

The impact of the scalability feature is augmented by incorpo-
rating two additional features to maximize performance and re-
source utilization in all cases regardless of the size of the
network. To maximize performance, the architecture implements
a highly efficient pipelined design based on using an out of order
weight update rule to overcome the data hazard inherent in the
BP algorithm. To maximize resource utilization, it selects the most
efficient arithmetic representation that balances between preci-
sion and area based on our previous study examining the impact
of arithmetic representation on area size and precision [20]. To
combine all three features of scalability, pipelining and efficient
implementation, we developed new formulas that link perfor-
mance and resource utilization with the network topology and de-
gree of parallelism. This allows custom implementation of every
network to maximize performance and resource utilization.

Tests conducted on several standard benchmark problems show
high resource utilization efficiency while achieving remarkable
algorithm performance – up to five orders of magnitude (O5) boost
over software based ANN simulators. Comparing performance to

1 In [23], the term GOPS is not specifically defined, but is generally understood to
represent Giga Operations Per Second.

A. Savich et al. / Microprocessors and Microsystems 36 (2012) 138–150 139

http://www.clearspeed.com
http://www.clearspeed.com
http://www.nvidia.com

Download	English	Version:

https://daneshyari.com/en/article/462768

Download	Persian	Version:

https://daneshyari.com/article/462768

Daneshyari.com

https://daneshyari.com/en/article/462768
https://daneshyari.com/article/462768
https://daneshyari.com/

