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In this paper, the formation tracking problem for the second-order multi-agent system
with and without input delay are investigated, respectively. The objective is to design
the formation tracking algorithm such that a certain follower follows the trajectory of
the leader while also maintains a certain desired geometric formation with other agents
simultaneously. The impulsive algorithms are designed by using only the relative position
information of the neighbors for both the cases with and without the input delay. By using
properties of the Laplacian matrix and combining the stability theory of impulsive systems,
necessary and sufficient conditions are derived to achieve the formation tracking of the
second-order multi-agent system with and without the input delay, respectively. The
numerical examples are given to illustrate the effectiveness of our theoretical results.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the multi-agent system (MAS) has drawn significant attention owing to its various applications in many
areas, such as sensor networks [1], multiple mobile robots [2], unmanned air vehicles [3]. The research topics of MAS include
consensus [4–6], rendezvous [7,8], flocking [9,10], formation [11–14] and so on, among which formation control has been a
hot topic [15,16]. It has appealed to more and more researchers due to its broad range of applications in autonomous
unmanned vehicles, navigation of spacecrafts and the cooperative control of mobile robot systems. Formation control prob-
lem in the presence of a leader which is called formation tracking problem [17] can be seen as an extension of the general
formation control problem.

Over the past decades, the formation tracking problems have been studied by many researchers. In the existing litera-
tures, many different control methods have been utilized including the sliding mode control [18,19], adaptive control
[20–22], model predictive control [23,24], feedback control [25] and so on. The decentralized sliding mode estimators were
introduced to achieve decentralized formation tracking of multiple autonomous vehicles and multiple robot system in
[18,19], respectively. The adaptive control laws were proposed to solve the formation tracking problem of electrically driven
multiple mobile robots and multiple fully actuated surface vessels in [20,21], respectively. A distributed adaptive control
approach based on backstepping technique was proposed to achieve the consensus tracking and the formation control of
nonholonomic mobile robots in [22]. The model predictive control was adopted to study the formation control problem
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for mobile robots in active target tracking problem in [23]. The model predictive control was proposed to solve the two sub-
problems: trajectory control and formation control problems in [24]. The output-feedback cooperative control was applied to
the formation tracking problem of unicycle-type mobile robots in [25].

The control methods mentioned above have the common feature of requiring continuous control. However, utilizing con-
tinuous control may result in much energy consumption, large amounts of communication bandwidth and short communi-
cation lifetime. Unlike the continuous control method, the impulsive control is only exerted at impulsive instants and has
advantages over the above continuous control in some aspects, such as smaller control efforts, less energy consumption, less
occupation of communication bandwidth and simpler implementation.

To the best of the authors’ knowledge, there are no results concerning with the formation tracking of the second-order MASs
by utilizing the impulsive control with or without input delays. Therefore, the formation tracking of second-order MAS with and
without input delay via impulsive control are studied in this paper. Both the directed graph and undirected graph are consid-
ered. Considering that the velocity states of agents are usually difficult to be measured in practice and the position states of
agents can be obtained more easily, instead, a novel impulsive algorithm with position-only information is proposed to achieve
the formation tracking for the second-order MAS. The necessary and sufficient conditions are derived for the formation tracking
of the MAS with and without input delay, respectively. These results give the guidelines to design the impulsive formation
tracking algorithm for the second-order MAS. The numerical examples are given to illustrate our theoretical results.

The rest of the paper is organized as follows. Some preliminaries of algebraic graph theory and matrix theory, as well as
the model description and the definition of formation tracking are given in Section 2. The convergence analysis of the pro-
posed impulsive algorithms with and without input delay under both the directed and undirected graph are formulated in
Section 3. The illustrative numerical examples are given in Section 4. Some conclusions are finally drawn in Section 5.

Notations: The notations used in this paper are fairly standard. R;C and Nþ denote the sets of real numbers, complex
numbers and positive integers, respectively. Rn and Rm�n denote the n-dimensional Euclidean space and the space of
m� n-dimensional matrices with real entries, respectively. For c 2 C;ReðcÞ and ImðcÞ are the real part and the imaginary
of c, respectively. The superscript ‘T’ stands for the transpose of a matrix. The notation �k k refers to the vector norm. The nota-
tion � denotes the Kronecker product of matrices. 1N is a column vector with all its elements equal to one, 0N is a column
vector with all its elements equal to zero, IN is a N-dimensional identity matrix, diagf� � �g refers to a diagonal matrix, or a
block diagonal matrix. qðPÞ denotes the spectral radius of square matrix P.

2. Preliminaries and problem formulation

In this section, some preliminaries of algebraic graph theory and matrix theory, as well as the model descriptions and the
definition of formation tracking of the system are given.

To begin with, some basic concepts and lemmas on the algebraic graph theory and the matrix theory are briefly
introduced.

A directed graph G ¼ ðV ; e;AÞ is described with a set of nodes V ¼ 1;2; . . . ;Nf g, a set of edges e 2 V � V and the weighted
adjacency matrix A ¼ ðaijÞN�N . Node i represents the i� th agent, an ordered pair j; if g denotes an edge in G. j; if g 2 e if and
only if the i� th agent can obtain information from the j� th agent directly. In this case, the j� th agent is the neighbor of the
i� th agent. The set of neighbors of the i� th agent is denoted by Ni ¼ j 2 V jðj; iÞ 2 ef g. The adjacency elements are nonneg-
ative. For j 2 Ni; aij > 0; and aij ¼ 0, otherwise, assume that aii ¼ 0; i 2 V . A directed path in digraph G is an ordered sequence
t1; t2; . . . ; tk of agents such that any ordered pair of vertices appearing consecutively in the sequence is an edge of the
digraph, i.e., ðti; tiþ1Þ 2 e, for any i ¼ 1;2; . . . ; k� 1. A directed tree is a digraph, where there exists an agent, called the root,
such that any other agent of the digraph can be reached by one and only one path starting at the root.

A graph G ¼ ðV ; e;AÞ is undirected if aij ¼ aji;8i; j 2 V .
The Laplacian matrix L ¼ lij

� �
N�N of graph G is defined as

lij ¼
�aij; i – j;PN
k¼1;k–i

aik; i ¼ j:

8><>: ð1Þ

Lemma 1 [26]. Let L be the Laplacian matrix of digraph G. Zero is a simple eigenvalue of L, and all the other eigenvalues have
positive real parts if and only if G contains a spanning tree.

Lemma 2 [27]. The Laplacian matrix L of an undirected graph G is semi-positive definite. It has a simple zero eigenvalue and all
the other eigenvalues are positive if and only if the graph G is connected, that is, all the eigenvalues of L satisfy
0 ¼ k1ðLÞ < k2ðLÞ 6 � � � 6 kNðLÞ.

Lemma 3 (Bilinear Transformation Theorem [28]). Polynomial f ðkÞ (of degree d) is Schur stable if and only if polynomial gðsÞ is

Hurwitz stable, where gðsÞ ¼ ðs� 1Þdf ðsþ1
s�1Þ.
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