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a b s t r a c t

We consider the numerical integration of coupled self-adjoint non-autonomous partial dif-
ferential systems. Under convergence conditions, the solution can be written as a series
expansion where each of its terms correspond to solutions of linear time dependent matrix
differential equations with oscillatory solutions that must be solved numerically. In this
work, we analyze second order of Magnus integrators whose numerical error grows with
the number of terms considered in the truncated series, n, at a rate that still allows us to
guarantee convergence of the numerical series. In addition, the integrator can be imple-
mented with a recursive algorithm such that the computational cost of the method grows
only linearly with the number of terms of the series. Higher order Magnus integrators are
also analyzed. Commutator-free Magnus integrators can be used with a similar recursive
algorithm and can provide highly accurate results, but they show a faster error growth with
n, and some caution must be taken if these methods are used. Numerical experiments con-
firm the performance of the proposed algorithm.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider the numerical integration of self-adjoint partial differential equations of the type

PðtÞutðx; tÞð Þt ¼ QðtÞuxxðx; tÞ; 0 6 x 6 d; t P 0; ð1Þ

with initial and boundary conditions given by

uð0; tÞ ¼ uðd; tÞ ¼ 0; t P 0;
uðx;0Þ ¼ f ðxÞ; 0 6 x 6 d;
utðx;0Þ ¼ gðxÞ; 0 6 x 6 d;

9>=>; ð2Þ

where uðx; tÞ; f ðxÞ; gðxÞ 2 Rr . We consider the case where:

(I) PðtÞ; QðtÞ 2 Rr�r are symmetric positive definite matrices.
(II) �P0ðtÞ and Q 0ðtÞ are both symmetric positive (or negative) semidefinite matrices.

(III) f ðxÞ is three times differentiable and f ð3ÞðxÞ is piecewise continuous in ½0; d� with f ð0Þ ¼ f ðdÞ ¼ f ð2Þð0Þ ¼ f ð2ÞðdÞ ¼ 0.
(IV) gðxÞ is twice differentiable with gð2ÞðxÞ piecewise continuous in ½0; d� and gð0Þ ¼ gðdÞ ¼ 0.
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The system (1) appears frequently in the study of microwave heating processes, where the variations of the dielectric
properties of the material with temperature, density, moisture content and other parameters make the system non-auton-
omous, see [10,13] for more details. Systems of type (1) can also be found on models for the study of electromagnetic pro-
cessing of homogeneous materials at high power densities or in the analysis of multi mode microwave applicators, see [8,17]

Under conditions (I)–(IV), the problem (1),(2) has, at most, a twice continuously differentiable solution [16, Section 2]. We
look for a numerical solution, and to this purpose we first consider separation of variables. In a bounded domain
Dðd; TÞ ¼ ðx; tÞ; 0 6 x 6 d; 0 6 t 6 Tf g, for a given T > 0, the solution can be formally written as a convergent series

uðx; tÞ ¼
X
nP1

YnðtÞan þ eY nðtÞbn

n o
sin

npx
d

� �
; ð3Þ

where an; bn 2 Rr are given by

an ¼
2
d

Z d

0
f ðxÞ sin

npx
d

� �
dx; bn ¼

2
d

Z d

0
gðxÞ sin

npx
d

� �
dx: ð4Þ

The matrices YnðtÞ; eY nðtÞ 2 Rr�r are given by

YnðtÞ ¼ Ir 0r�r½ �VnðtÞ; eY nðtÞ ¼ Ir 0r�r½ �WnðtÞ; ð5Þ

with VnðtÞ; WnðtÞ 2 R2r�r verifying the initial value problems (IVPs)

V 0nðtÞ ¼ Mðt;nÞVnðtÞ; Vnð0Þ ¼
Ir

0r�r

� �
; ð6Þ

W 0
nðtÞ ¼ Mðt;nÞWnðtÞ; Wnð0Þ ¼

0r�r

Pð0Þ

� �
; ð7Þ

where

Mðt;nÞ ¼
0r�r P�1ðtÞ

� np
d

� �2QðtÞ 0r�r

" #
2 R2r�2r ; ð8Þ

see [16] for details. Here, 0r�r ; Ir 2 Rr�r denotes the null and identity matrices, respectively. Note that, from our assumptions,
PðtÞ; QðtÞ are non-singular matrices for all t P 0.

Given a tolerance, it is possible to find n0 such that the truncated series for n 6 n0 has an error below than this tolerance.
However, in general, the solution for the matrices YnðtÞ; eY nðtÞ; n ¼ 1;2; . . . ;n0 can not be obtained in a closed form and must
be computed numerically (typically on a mesh 0 < t1 < t2 < . . . < tL where L also depends on n0), being this the most costly
part for the algorithm.

Since the performance of standard explicit integrators deteriorates, in general, as the value of n grows, implicit methods
are usually required to numerically solve the equations. However, in general, one needs to take L ¼ Oðn2

0Þ, i.e. the mesh size
has to be chosen inversely proportional to n2

0 and, in each interval, the method has to be applied n0 times (for n ¼ 1;2; . . . ;n0).
As a result, the matrices QðtÞ and P�1ðtÞ need to be evaluated in a number of mesh points which grows as n2

0, and the method
has to be applied Oðn3

0Þ times.
On the other hand, most exponential integrators can deal efficiently with the numerical solution for relatively large values

of n. Usually, one can take L ¼ Oðn0Þ and on each mesh the exponentials have to be computed for each value of n 6 n0.
The contributions (under convergence conditions) of YnðtÞ; eY nðtÞ to the solution (3) decrease with n, but the errors and

computational cost of most numerical integrators increase with n. For this reason, we consider a class of exponential inte-
grators based on the Magnus series expansion which provides sufficiently accurate solutions as n grows and the exponentials
can be computed using a simple recursive relation such that the computational cost of each term is irrespective of the value
of n. The numerical solutions obtained are also such that the series solution remains still convergent.

The paper is organized as follows. In Section 2, the convergence of the formal series solution (3) is established. In section
3, numerical methods based on Magnus expansion are proposed in order to solve the IVPs (6)–(8). Exploiting the structure of
the matrices, we found that the computational cost of the proposed method is very advantageous with respect to standard
numerical methods. The convergence of the series obtained by the numerical scheme is studied in Section 4. Section 5 deals
with the presentation of numerical experiments in order to test the effectiveness of the proposed algorithm. Conclusions are
presented in the last section.

Throughout this paper, k � k2, denotes the usual Euclidean norm of a vector in Rr , and k � k, denotes the 2-norm of a square
matrix in Rr�r .

2. Convergence of the formal series solution

We first review the most relevant results on the convergence of the series solution (see [16] for more details). Under the
assumptions (I)–(IV), existence solutions of (5)–(8) are guaranteed and, given T > 0, there exists a constant d such that
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