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a b s t r a c t

This paper is concerned with the boundedness of solutions of the complex Lorenz system.
We have obtained the global exponential attractive set Wk;m and the ultimate bound Xk;m

for this system. Furthermore, we confirm that the rate of the trajectories of the system
going from the exterior of the set Wk;m to the interior of the set Wk;m is an exponential rate.
The rate of the trajectories is also obtained. Numerical simulations are presented to show
the effectiveness of the proposed scheme.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

To estimate the boundedness of a chaotic system is a challenging but an interesting work in general [1–14]. A chaotic
system is bounded, in the sense that its phase portraits are bounded in the phase space. And the ultimate boundedness
of a chaotic system plays an important role in chaos control, chaos synchronization, and many other applications. If we
can show that a chaotic or a hyperchaotic system has a global attractive set, then the system cannot possess hidden attrac-
tors outside the global attractive set. This is very important for engineering applications, since it is very difficult to predict
the existence of hidden attractors and they can lead to crashes [15–17]. The boundedness of the Lorenz system were first
studied by G.A. Leonov [18]. Then, the ultimate boundedness of other chaotic systems, including the synchronous motor sys-
tem [19], a new chaotic system [20], the hyperchaotic Lorenz–Haken system [21], the Lü system [22] and the generalized
Lorenz chaotic systems [23], was also studied and some important results were obtained. However, it is a very difficult task
to estimate the boundedness of the chaotic systems [22,23]. The construction of new Lyapunov functions is always a piece of
art, since there is no regular way to find one. Therefore, it is necessary to study the boundedness of the complex Lorenz cha-
otic system.

Since Fowler et al. introduced the complex Lorenz equations [24], many complex chaotic systems have been proposed and
studied in the last few decades. For example, Mahmoud et al. introduced the complex Chen and Lü systems [25]. It is well
known that the complex chaotic systems have more widely applying space [25]. Such as secure communication, synchroni-
zation, control, etc. [25]. Another interesting application that discovered was the anti-synchronization, which has been
investigated both experimentally and theoretically in many physical systems [26,27].

2. Mathematical model

State equations of the complex Lorenz chaotic system can be described as follows [28]:
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_y1 ¼ aðy2 � y1Þ;
_y2 ¼ by1 � y2 � y1y3;

_y3 ¼ 1
2 ðy1�y2 þ �y1y2Þ � cy3;

8><
>: ð1Þ

where y1 ¼ u1 þ ju2; y2 ¼ u3 þ ju4; y3 ¼ u5; j ¼
ffiffiffiffiffiffiffi
�1
p

, �y1 and �y2 are conjugate complex numbers of y1 and y2. Replacing com-
plex variables in system (1) with real number variables and imaginary number variables, Zhang et al. get an equivalent sys-
tem as follows (see [28]):

_u1 ¼ aðu3 � u1Þ;
_u2 ¼ aðu4 � u2Þ;
_u3 ¼ bu1 � u3 � u1u5;

_u4 ¼ bu2 � u4 � u2u5;

_u5 ¼ u1u3 þ u2u4 � cu5;

8>>>>>><
>>>>>>:

ð2Þ

where a, b, c are positive parameters of system (2). When a ¼ 35; b ¼ 55; c ¼ 8
3, the system (2) is chaotic [28]. Phase portraits

of system (2) are shown in Figs. 1 and 2.

Remark. While positive Lyapunov exponent is widely used as indication of chaos, rigorous consideration requires
verification of additional properties of considered system (such as regularity, ergodicity), because of so-called Perron effects
of Lyapunov exponents sign reversal (see excellent papers [29–31] for a detailed discussion of the attractor).

Some basic dynamical properties of the complex Lorenz system (2) were studied in [28]. But many properties of the com-
plex Lorenz remains unknown. In the following, we will discuss the boundedness of the complex Lorenz system (2).

The following structure of this paper is organized as follows: In Section 3, we will study the ultimate boundedness of sys-
tem (2). In Section 4, we will study the global exponential attractive set of system (2). Conclusion remarks will be given in
Section 5.

3. The ultimate boundedness

In this section, we will discuss the boundedness of the complex Lorenz system (2) for any a > 0, b > 0, c > 0. Before going
into details, let us introduce the following lemma.

Lemma 1. Define

P1 ¼ ðx1; x2; y1; y2; zÞ
x2

1

a2

���� þ x2
2

b2 þ
ðz� cÞ2

c2 þ y2
1

d2 þ
y2

2

e2 ¼ 1; a – 0; b – 0; c – 0; d – 0; e – 0

( )
; ð3Þ

and

G1ðx1; x2; y1; y2; zÞ ¼ x2
1 þ x2

2 þ y2
1 þ y2

2 þ z2; H1ðx1; x2; y1; y2; zÞ ¼ x2
1 þ x2

2 þ y2
1 þ y2

2 þ ðz� 2cÞ2; ðx1; x2; y1; y2; zÞ 2 P1:

Then, we have the conclusions that

max G1
ðx1 ;x2 ;y1 ;y2 ;zÞ2P1

¼ max H1
ðx1 ;x2 ;y1 ;y2 ;zÞ2P1

¼

a4

a2�c2 ; a P b; a P d; a P e; a P
ffiffiffi
2
p

c;
b4

b2�c2 ; b > a; b P d; b > e; b P
ffiffiffi
2
p

c;

d4

d2�c2 ; d > a; d > b; d P e; d P
ffiffiffi
2
p

c;
e4

e2�c2 ; e > a; e P b; e > d; e P
ffiffiffi
2
p

c;

4c2; a <
ffiffiffi
2
p

c; b <
ffiffiffi
2
p

c; d <
ffiffiffi
2
p

c; e <
ffiffiffi
2
p

c:

8>>>>>>>><
>>>>>>>>:

Proof. It can be easily proved by the Lagrange multiplier method. h

Lemma 2. Define a set

C0 ¼ ðx; y; z;wÞ x2

~a2

���� þ y2

~b2
þ ðz�

~cÞ2
~c2 þw2

~d2
¼ 1; ~a – 0; ~b – 0; ~c – 0; ~d – 0

( )
; ð4Þ

and

Gðx; y; z;wÞ ¼ x2 þ y2 þ z2 þw2; Hðx; y; z;wÞ ¼ x2 þ y2 þ ðz� 2~cÞ2 þw2; ðx; y; z;wÞ 2 C0:
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