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a b s t r a c t

In the paper, we propose a construction of new cubic spline-wavelet bases on the unit cube
satisfying homogeneous Dirichlet boundary conditions of the second order. The basis func-
tions have small supports and wavelets have vanishing moments. We show that stiffness
matrices arising from discretization of the biharmonic problem using a constructed wave-
let basis have uniformly bounded condition numbers and these condition numbers are very
small. We present quantitative properties of the constructed bases and we show a superi-
ority of our construction in comparison to some other cubic spline wavelet bases satisfying
boundary conditions of the same type.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years wavelets have been successfully used for solving various types of differential equations [8,9] as well as
integral equations [17,19,20]. The quantitative properties of wavelet methods strongly depend on the choice of a wavelet
basis, in particular on its condition number. Therefore, a construction of a wavelet basis is an important issue.

In this paper, we propose a construction of cubic spline wavelet bases on the interval that are well-conditioned, adapted
to homogeneous Dirichlet boundary conditions of the second order, the wavelets have vanishing moments and the shortest

possible support. The wavelet basis of the space H2
0 0;1ð Þ2
� �

is then obtained by an isotropic tensor product. We compare the

condition numbers of the corresponding stiffness matrices for various constructions. Finally, a quantitative behavior of an
adaptive wavelet method for several boundary-adapted cubic spline wavelet bases is studied.

First of all, we summarize the desired properties of a constructed basis:

– Riesz basis property. We construct Riesz bases of the space H2
0 0;1ð Þ and H2

0 0;1ð Þ2
� �

.

– Polymial exactness. Since the primal basis functions are cubic B-splines, the primal multiresolution analysis has
polynomial exactness of order four.

– Vanishing moments. The inner wavelets have two vanishing moments, the wavelets near the boundary can have less
vanishing moments.

– Short support. The wavelets have the shortest possible support for a given number of vanishing moments.
– Locality. The primal basis functions are local.
– Closed form. The primal scaling functions and wavelets are known in the closed form.
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Applied Mathematics and Computation 243 (2014) 44–56

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.05.065&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.05.065
mailto:dana.cerna@tul.cz
mailto:vaclav.finek@tul.cz
http://dx.doi.org/10.1016/j.amc.2014.05.065
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


– Homogeneous Dirichlet boundary conditions. Our wavelet bases satisfy homogeneous Dirichlet boundary conditions of the
second order.

– Well-conditioned bases. Our objective is to construct a well conditioned wavelet basis.

Moreover, in a comparison with constructions in [1,4,11,21,22] that are quite long and technical, the construction in this
paper is very simple. Many constructions of cubic spline wavelet or multiwavelet bases on the interval have been proposed
in recent years. In [2,4,11,21] cubic spline wavelets on the interval were constructed. In [10] cubic spline multiwavelet bases
were designed and they were adapted to complementary boundary conditions of the second order in [22]. In these cases dual
functions are known and are local. Cubic spline wavelet or multiwavelet bases where duals are not local were constructed in
[7,14–16]. Some of these bases were already adapted to boundary conditions and used for solving differential equations
[6,18]. The advantage of our construction is the shortest possible support for a given number of required vanishing moments.
Vanishing moments are necessary in some applications such as adaptive wavelet methods [8,9]. Originally, these methods
were designed for wavelet bases with local duals. However, it was shown in [12] that wavelet bases without local dual basis
can be used if the solved equation is linear.

This paper is organized as follows: In Section 2 we briefly review the concept of wavelet bases. In Section 3 we propose a
construction of primal and dual scaling bases. The refinement matrices are computed in Section 4. In Section 5 the properties
of the projectors associated with constructed bases are derived and the proof that the bases are indeed Riesz bases is given.
Quantitative properties of constructed bases and other known cubic spline wavelet and multiwavelet bases are studied in
Section 6. In Section 7 we compare the number of basis functions and the number of iterations needed to resolve the problem
with desired accuracy for bases constructed in this paper and bases from [4,22]. A numerical example is presented for an
equation with the biharmonic operator in two dimensions.

2. Wavelet bases

This section provides a short introduction to the concept of wavelet bases in Sobolev spaces. In this paper, we consider the

domain X ¼ ð0;1Þ or X ¼ ð0;1Þ2. We denote the Sobolev space or its subspace by H � Hs Xð Þ for nonnegative integer s and the
corresponding inner product by �; �h iH , a norm by �k kH and a seminorm by �j jH . In case s ¼ 0 we consider the space L2 Xð Þ and

we denote by �; �h i and �k k the L2-inner product and the L2-norm, respectively. Let J be some index set and let each index
k 2 J take the form k ¼ j; kð Þ, where kj j :¼ j 2 Z is a scale or a level. Let

vk kl2 Jð Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k2J

vkj j2
s

; for v ¼ vkf gk2J ; vk 2 R ð1Þ

and

l2
Jð Þ :¼ v : v ¼ vkf gk2J ; vk 2 R; vk kl2 Jð Þ <1

n o
: ð2Þ

A family W :¼ wk; k 2 Jf g is called a (primal) wavelet basis of H, if

(i) W is a Riesz basis for H, i.e. the closure of the span of W is H and there exist constants c; C 2 0;1ð Þ such that

c bk kl2 Jð Þ 6
X
k2J

bkwk

�����
�����

H

6 C bk kl2 Jð Þ; b :¼ bkf gk2J 2 l2
Jð Þ: ð3Þ

Constants cw :¼ sup c : c satisfiesð3Þf g; Cw :¼ inf C : C satisfiesð3Þf g are called Riesz bounds and cond W ¼ Cw=cw is called the
condition number of W.

(ii) The functions are local in the sense that diam Xkð Þ 6 C2� kj j for all k 2 J , where Xk is the support of wk, and at a given
level j the supports of only finitely many wavelets overlap at any point x 2 X.

By the Riesz representation theorem, there exists a unique family ~W ¼ ~wk; k 2 ~J
n o

� H biorthogonal to W, i.e.

wi;k;
~wj;l

D E
H
¼ di;jdk;l; for all i; kð Þ 2 J ; j; lð Þ 2 ~J ; ð4Þ

where di;j denotes the Kronecker delta, i.e. di;j ¼ 1 for i ¼ j and di;j ¼ 0 for i – j. This family is also a Riesz basis for H, but the
functions ~wj;l need not be local. The basis ~W is called a dual wavelet basis.

In many cases, the wavelet system W is constructed with the aid of a multiresolution analysis. A sequence V ¼ Vj
� �

jPj0
, of

closed linear subspaces Vj � H is called a multiresolution or multiscale analysis, if

Vj0 � Vj0þ1 � � � � � Vj � Vjþ1 � � � �H ð5Þ

and [jPj0 Vj is complete in H.
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