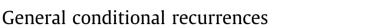
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc



Daniel Panario^a, Murat Sahin^{b,*}, Qiang Wang^a, William Webb^c

^a School of Mathematics and Statistics, Carleton University, Ottawa K1S 5B6, Canada

^b Department of Mathematics, Ankara University, Tandogan, Ankara 06100, Turkey

^c Department of Mathematics, Washington State University, Pullman, WA 99163, USA

ARTICLE INFO

Keywords: Linear recurrences Characteristic polynomials Conditional recurrences Continuants Fibonacci sequences Integer partitions

ABSTRACT

A general conditional recurrence sequence $\{q_n\}$ is one in which the recurrence satisfied by q_n depends on the residue of n modulo some integer $r \ge 2$. The properties of such sequences are studied, and in particular it is shown that any such sequence $\{q_n\}$ satisfies a single recurrence equation not dependent on the modulus r. We also obtain generating functions and Binet-like formulas for such sequences.

© 2014 Elsevier Inc. All rights reserved.

CrossMark

1. Introduction

Let $\{a_{ij}\}$ be real numbers for $0 \le i \le r-1$ and $1 \le j \le s$, and define a sequence $\{q_n\}$ with given initial terms q_i , $0 \le i \le s-1$, and for $n \ge s$

$$q_{n} = \begin{cases} a_{0,1}q_{n-1} + a_{0,2}q_{n-2} + \dots + a_{0,s}q_{n-s}, & \text{if } n \equiv 0 \pmod{r}, \\ a_{1,1}q_{n-1} + a_{1,2}q_{n-2} + \dots + a_{1,s}q_{n-s}, & \text{if } n \equiv 1 \pmod{r}, \\ \vdots & \vdots \\ a_{r-1,1}q_{n-1} + a_{r-1,2}q_{n-2} + \dots + a_{r-1,s}q_{n-s}, & \text{if } n \equiv r-1 \pmod{r}. \end{cases}$$

$$(1)$$

We call such a sequence a general conditional recurrence sequence with associated coefficient matrix

<i>A</i> =	a _{0,1}	$a_{0,2}$	• • •	$a_{0,s}$	
	<i>a</i> _{1,1}	<i>a</i> _{1,2}	• • •	<i>a</i> _{1,s}	
	:	÷	·	÷	•
	$a_{r-1,1}$	$a_{r-1,2}$		$a_{r-1,s}$	

Some well-known sequences, such as the Fibonacci, Pell, *k*-Fibonacci, Tribonacci, Lucas and Jacobsthal are special cases of such sequences. The following are examples of families of sequences which are special cases of $\{q_n\}$.

(1) If r = 2, s = 2 with $a_{0,2} = a_{1,2} = 1$ and any nonzero real numbers $a_{0,1}$ and $a_{1,1}$, we obtain the generalized Fibonacci sequences [4].

http://dx.doi.org/10.1016/j.amc.2014.05.108 0096-3003/© 2014 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: daniel@math.carleton.ca (D. Panario), msahin@ankara.edu.tr (M. Sahin), wang@math.carleton.ca (Q. Wang), webb@math.wsu.edu (W. Webb).

(2) If s = 2 and $a_{i,2} = 1$ for $0 \le i \le r - 1$ with any nonzero real numbers $a_{i,1}$, we obtain the sequences studied in [3], the *k*-periodic Fibonacci sequences. These sequences are also studied independently in [11,13].

(3) If s = 2 for any non-zero real numbers $a_{i,1}$, $a_{i,2}$, $0 \le i \le r - 1$, we obtain the sequences studied in [10].

(4) If r = 2, s = 2 for real numbers $a_{i,j}$, not all zeros, we obtain the sequences defined in [12].

(5) If $a_{i,1} = a_{i,s} = 1$ and $a_{i,j} = 0$, $0 \le i \le r - 1$ and $2 \le j \le s - 1$, we obtain the *s*-bonacci numbers defined on page 21 of [7].

(6) If $a_{ij} = 1$, $0 \le i \le r - 1$ and $1 \le j \le s$, we obtain the *s*th *order Fibonacci numbers* defined on page 21 of [7].

In addition, other examples appear in Sloane's *On-Line Encyclopedia of Integer Sequences*. If (r, s) = (2, 3) and $(a_{0,1}, a_{0,2}, a_{0,3}, a_{1,1}, a_{1,2}, a_{1,3}) = (1, 1, 0, 1, 1, 1)$, we obtain the sequence [A068911] which can be described as the number of n step walks (each step ± 1 starting from 0) which are never more than 2 or less than -2. In the following table we give examples where (r, s) = (3, 2).

$(a_{0,1}, a_{0,2}, a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2})$	sequence	name
(1,1,0,1,1,1)	[A097564]	
(1, 1, 1, 0, 0, 0)	[A117567]	Riordan arrays
(0, 1, 1, 1, 1, 1)	[A092550]	two-steps-forward and one-step backward Fibonacci-
		based switched sequence inspired by sand piles
(2, 0, 2, 1, 2, 0)	[A004647]	
(2, 0, 1, 1, 1, 1)	[A133335]	

In Section 2, we present a method which finds a linear recurrence equation satisfied by $\{q_n\}$ for any given r and s. In this way, one can find properties of these sequences by using well-known results about linear recurrence sequences. In Sections 3 and 4, we study two special cases of $\{q_n\}$, namely $\{u_n\}$ and $\{v_n\}$, by taking r = 2 and s = 2, respectively. We find corresponding linear recurrence equations, for $\{u_n\}$ and $\{v_n\}$ in terms of partitions of a positive integer and generalized continuants, respectively. Also, we find the generating function and a Binet-like formula for the sequence $\{u_n\}$.

2. General conditional recurrence sequences: successor method

In this section we derive recurrence relations for sequences defined by Eq. (1). We describe a method to find the corresponding linear recurrence for a given conditional sequence: the successor method.

Let $\{t_n\}$ denote any sequence defined by a linear recurrence relation. The *successor operator*, denoted by *E*, is the operator defined by $Et_n = t_{n+1}$ and $E^j t_n = t_{n+j}$. A homogeneous linear recurrence relation with constant coefficients can be conveniently expressed using the operator *E*. The general homogeneous linear recurrence relation

$$t_{n+\ell} + a_1 t_{n+\ell-1} + a_2 t_{n+\ell-2} + \cdots + a_\ell t_n = 0,$$

where a_1, a_2, \ldots, a_ℓ are constants becomes $C(E)t_n = 0$ where C(x) is the characteristic polynomial of degree ℓ

$$C(x) = x^{\ell} + a_1 x^{\ell-1} + a_2 x^{\ell-2} + \dots + a_{\ell}.$$

For a more complete description of using the operator *E* to study recurrence sequences see [2].

Define *k* as the smallest positive integer such that $s \leq kr$. For convenience, define $a_{i,0} = 1$ for $0 \leq i \leq r - 1$ and $a_{i,j} = 0$ if $s < j \leq kr$. We can rewrite Eq. (1) as follows:

$$0 = \begin{cases} -a_{0,0}q_n + a_{0,1}q_{n-1} + a_{0,2}q_{n-2} + \dots + a_{0,kr}q_{n-kr}, & \text{if } n \equiv 0 \pmod{r}, \\ -a_{1,0}q_n + a_{1,1}q_{n-1} + a_{1,2}q_{n-2} + \dots + a_{1,kr}q_{n-kr}, & \text{if } n \equiv 1 \pmod{r}, \\ \vdots & \vdots \\ -a_{r-1,0}q_n + a_{r-1,1}q_{n-1} + a_{r-1,2}q_{n-2} + \dots + a_{r-1,kr}q_{n-kr}, & \text{if } n \equiv r-1 \pmod{r}. \end{cases}$$

$$(2)$$

We note that the coefficients c_{ii} in Eq. (2) have subscripts $0 \le i \le r - 1$ and $0 \le j \le kr$.

If *n* in the *i*th equation of system (2) is replaced by (n + k)r + i for all $0 \le i \le r - 1$, we obtain the following *r* homogeneous equations:

$$-a_{0,0}q_{(n+k)r} + a_{0,1}q_{(n+k)r-1} + a_{0,2}q_{(n+k)r-2} + \dots + a_{0,kr}q_{(n+k)r-kr} = 0,$$

$$-a_{1,0}q_{(n+k)r+1} + a_{1,1}q_{(n+k)r} + a_{1,2}q_{(n+k)r-1} + \dots + a_{1,kr}q_{(n+k)r-kr+1} = 0,$$

$$\vdots \quad \vdots \quad \vdots$$

$$-a_{r-1,0}q_{(n+k)r+r-1} + a_{r-1,1}q_{(n+k)r+r-2} + a_{r-1,2}q_{(n+k)r+r-3} + \dots + a_{r-1,kr}q_{(n+k)r-kr+r-1} = 0.$$
(3)

Download English Version:

https://daneshyari.com/en/article/4627727

Download Persian Version:

https://daneshyari.com/article/4627727

Daneshyari.com