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a b s t r a c t

In this paper we propose a new method to apply the Generalized Cross-Validation (GCV) as
a stopping rule for the Conjugate Gradient (CG). In general, to apply GCV to an iterative
method, one must estimate the trace of the so-called influence matrix which appears in
the denominator of the GCV function. In the case of CG, unlike what happens with
stationary iterative methods, the regularized solution has a nonlinear dependence on the
noise which affects the data of the problem. This fact is often pointed out as a cause of poor
performance of GCV. To overcome this drawback, our proposal linearizes the dependence
by computing the derivatives through iterative formulas. We compare the proposed
method with other methods suggested in the literature by an extensive numerical
experimentation on both 1D and 2D test problems.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Given a matrix A 2 Rn�n and a vector b 2 Rn, we consider the system

Ax ¼ b: ð1Þ

We assume that A is a large full rank matrix, having singular values which gradually decay to zero, so that it is difficult to
determine its numerical rank. In many applications the available right-hand side of the system is contaminated by a noise g
accounting for both the measurement errors and the process involved in the construction of the discrete model describing
the underlying continuous phenomenon, i.e.

b ¼ b� þ g:

The vectors b� and x�, such that Ax� ¼ b�, are considered the exact right-hand side and the exact solution of the system.
Classical examples of this kind of problems arise from the discretization of Fredholm integral equations of the first kind,
as for instance in the imaging deconvolution, where A represents an imaging system, x� an object, b� the noise-free image
of the object and b the noisy image.

Due to the ill-conditioning of the matrix and the presence of the noise, the solution ex ¼ A�1b is often a poor approxima-
tion of x� even if the magnitude of g is small, and the problem of finding a good approximation of x� turns out to be a discrete
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ill-posed problem [7]. Special techniques called regularization methods are required to deal with this kind of problems. Both
direct methods (as Tikhonov method) and iterative methods can be used to this aim. Iterative methods are suggested for
large matrices A without particular structure properties. The iterative method has to enjoy the semi-convergence property,
i.e. in presence of the noise it reconstructs first the low-frequency components, which correspond to the largest singular
values of A. The iteration should be stopped before the high-frequency components of the noise start to enter the computed
solution. In this sense the iteration number plays the role of the regularization parameter.

Among the classical semi-convergent methods we consider here the Conjugate Gradient method (CG). The regularizing
properties of CG are well known (see for example [13]). CG has in general a good convergence rate and finds quickly an
optimal vector xopt which minimizes the error with respect to x�. This behavior can be a disadvantage in the regularization
context, because also the high-frequency components enter quickly the computed solution and the error increases sharply
after the optimal number kopt of steps. As a matter of fact, the determination of kopt is very sensitive to the perturbation of the
right-hand side [3]. As a consequence, the regularizing efficiency of CG depends heavily on the effectiveness of the stopping
rule employed. Three widely used stopping techniques are the Discrepancy Principle, which is based on the idea that the
residual norm should be related to an a priori knowledge of the noise level, the Unbiased Predictive Risk Estimator (UPRE)
and the Generalized Cross-Validation rule (GCV) (see [7,15,16]). The last two methods are based on predictive error estimates.
In this paper we focus our attention on GCV, which has the advantage over the other two techniques of not requiring infor-
mation on the noise level.

The stopping index is estimated through the minimum of the GCV function, whose denominator requires the computa-
tion of the trace of the CG influence matrix. GCV has been shown to be very effective when applied to iterative methods
whose influence matrix does not depend on the noise, i.e. when the regularized solution depends linearly on the right-hand
side of the system. However, this is not the case of CG, and some techniques have been proposed to overcome this drawback
[4,6,7,14]. In order to approximate the denominator of the GCV function, we propose a new method which linearizes the
dependence of the regularized solution on the noise. The novelty of our method consists in approximating the required
derivatives by means of iterative formulas instead of using finite differences as suggested in [14]. Iterative formulas of this
kind have been introduced in [1,12] for other regularization methods. The extensive numerical experimentation carried out
on both 1D and 2D test problems shows the effectiveness of the method here described with respect to other methods
proposed in the literature.

The outline of the paper is the following: preliminary definitions and the GCV function are given in Section 2. In Section 3
the CG code is recalled in order to derive the expressions used for computing the trace of the influence matrix. Unless the
matrix A has some special structure, the direct application of these expressions is impracticable for large dimensions, so a
stochastic implementation based on the trace lemma is given. The special case of a circulant matrix A is examined in Sec-
tion 4. The numerical experimentation, described in Section 5, shows that the different approximations of the denominator
of the GCV function are in general not very critical in detecting an acceptable stopping index. Anyway, a reasonable ranking
of them can be obtained for the examples we consider.

Throughout the paper, g is assumed to be an uncorrelated Gaussian white noise, i.e. with distribution Nð0;r2IÞ, and kvk
denotes the Euclidean norm of a vector v.

2. The regularized solution

Let A ¼ URVT be the singular value decomposition of A, where U ¼ ½u1; . . . ;un� 2 Rn�n and V ¼ ½v1; . . . ;vn� 2 Rn�n have
orthonormal columns, i.e. UT U ¼ VT V ¼ I, and R ¼ diagðr1; . . . ;rnÞ, where the ri for i ¼ 1; . . . ;n are the singular values of
A, gradually decaying toward zero. In practice, the last ones settle to values of the same magnitude of the machine precision.

The expansions of b� and g in the basis U are

b� ¼
X

i

b�i ui; g ¼
X

i

gi ui; where b�i ¼ uT
i b�; gi ¼ uT

i g:

Then

x� ¼ A�1b� ¼
X

i

x�i vi; where x�i ¼
b�i
ri
; ð2Þ

and

ex ¼ x� þ A�1g ¼ x� þ
X

i

gi

ri
vi ¼

X
i

exi vi; where exi ¼ x�i þ
gi

ri
: ð3Þ

The coefficients gi are typically of the same order for all i, with jgij � kgk=n. If the last ri’s are much smaller than the cor-
responding jgij, the quantities gi=ri greatly increase with i. It follows that the low-frequency components of ex and x� do
not differ much, while the high-frequency components of ex are disastrously dominated by the high-frequency components
of the noise and ex can be affected by a large error with respect to x�. The contribution of the high-frequency components of
the noise should be damped in the regularized solution. Acceptable approximations can be obtained only if the jb�i j decay to
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