Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

The relative efficiency of Liu-type estimator in a partially linear model

libo Wu*

Department of Mathematics and KLDAIP, Chongging University of Arts and Sciences, Chongging 402160, Ching School of Mathematics and Finances, Chongqing University of Arts and Sciences, Chongqing 402160, China

ARTICLE INFO

Keywords: Liu-type estimator Partially linear model Mean squared error

ABSTRACT

In this paper, we study the partially linear model, $y = X\beta + f + \varepsilon$. We introduce a new Liu-type estimator in a partially linear model, then we compared the new estimator with the two-step estimator in the mean squared error sense. Finally, we give a simulation study to explain the validity and feasibility of the approach.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider the following partially linear model

$$y_i = x'_i\beta + f(t_i) + \varepsilon_i, \quad i = 1, \dots, n$$

where y'_i s are observations, $x'_i = (x_{i1}, \ldots, x_{ip})$ and x_1, \ldots, x_n are known *p*-dimensional with $p \leq n$. t'_i s are values of an extra univariate variable such as the time at which the observation is made, $\beta = (\beta_1, \dots, \beta_n)'$ is an unknown parameter vector. $f(\cdot)$ is an unknown smooth function, and ε_i 's are random error supposed to be *i.i.d.* $N(0, \sigma^2)$ distributed.

Use matrix vector notation, model (1.1) can be written as follows:

$$y = X\beta + f + \varepsilon,$$

where $y = (y_1, ..., y_n)', X' = (x_1, ..., x_n), f = (f(t_1), ..., f(t_n))'$ and $\varepsilon = (\varepsilon_1, ..., \varepsilon_n)'.$

Engle et al. [1] also called model (1.1) as a partial spline model. f(t) has been called as smooth part of the model and suppose that it represents a smooth unparameterized functional relationship. The main problem for us to consider is to estimate unknown parameter vector β and nonparametric function f from the data $\{y_1, x_i, t_i\}$. In this paper, we mainly discuss how to estimate unknown parameter vector β and nonparametric function f. If we know the estimator of β , then we can obtain the estimator of function *f*.

There are many methods to estimate β and f, such as, penalized least-squares (see [2]), smoothing splines (see [3]), piecewise polynomial (see [4]) and two steps estimation methods (see [5]). Hu [6] used two-step way and introduced a ridge estimators for the partially linear model. Duran et al. [7] also discussed the two-step method. The main thought of two steps estimation is the following: the first step, $f(t, \beta)$ is defined with supposition where β is assumed to be known; the second step, the estimator of parametric β is attained by a least-squares method; Then we may obtain $f(t, \hat{\beta})$.

When the regressor exists multicollinearity, many authors improved to overcome this problem. Tabakan and Akdeniz [8] introduced a difference-based ridge estimator in partially linear model. Duran et al. [9] proposed a difference-based ridge

http://dx.doi.org/10.1016/j.amc.2014.05.103 0096-3003/© 2014 Elsevier Inc. All rights reserved.

(1.1)

(1.2)

^{*} Address: Department of Mathematics and KLDAIP, Chongqing University of Arts and Sciences, Chongqing 402160, China. E-mail address: linfen52@126.com

and Liu estimator in partially linear model. Tabakan [10] consider the semiparametric regression model with linear equality restrictions and proposed a new restricted difference-based ridge estimator.

In this paper, we use two-step method to introduce a new Liu-type estimator in partially linear model. We also discuss the superiority of the new estimator with the two-step estimator in the terms of the mean squared error.

The paper is organized as follows. In Section 2, the Liu-type estimator in partially linear model is introduced. In Section 3, we give the comparison of the new estimator and the two-step estimator in the mean squared error sense and we give a method to choose the biasing parameter in Section 4. A simulation study is given to illustrate the new method in Section 5 and some conclusion remarks are given in Section 6.

2. The new estimator

In the following, we introduce a Liu-type estimation method based on a two steps estimation process. In the first step, we suppose that β is known, and then the nonparametric estimator of *f* is given as follows:

$$f(t,\beta) = S(y - X\beta), \tag{2.1}$$

where $S = (I + \alpha K)^{-1}$ is a smoother matrix which depends on a smoothing parameter α and K is a symmetric nonnegative matrix [2]. Then based on $\{y_i - x'_i\beta, t_i\}$ (i = 1, ..., n), and $S = S(t_1, ..., t_n)$ is an $n \times n$ positive-definite smoother matrix from univariate cubic spline smoothing [7]. Consider the following model

$$\tilde{y} = \tilde{X}\beta + \tilde{\varepsilon},\tag{2.2}$$

where $\tilde{y} = (I - S)y$, $\tilde{X} = (I - S)X$, $\tilde{f} = (I - S)f$, $\varepsilon^* = (I - S)\varepsilon$ and $\tilde{\varepsilon} = \tilde{f} + \varepsilon^*$. (2.2) is linear model. Least square estimator of β of semiparametric regression model is got by minimizing:

$$(\tilde{\mathbf{y}} - \tilde{\mathbf{X}}\boldsymbol{\beta})'(\tilde{\mathbf{y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}). \tag{2.3}$$

If we suppose that $\tilde{X} = (I - S)X$ has full column rank, then we obtain

$$\hat{\beta}_p = \left(\tilde{X}'\tilde{X}\right)^{-1}\tilde{X}'\tilde{y},\tag{2.4}$$

$$\hat{f}_p = S(y - X\hat{\beta}_p). \tag{2.5}$$

The estimator can also be called as two-step estimator $\hat{\beta}_p = \hat{\beta}_{TS}$. In the second step, we add a penalizing function $\|\frac{d\hat{\rho}_p}{b^{1/2}} - k^{1/2}\beta\|^2$ to the least squares objective (2.3) is same to minimizing the criterion

$$(\tilde{y} - \tilde{X}\beta)'(\tilde{y} - \tilde{X}\beta) + \left(\frac{d\hat{\beta}_p}{k^{1/2}} - k^{1/2}\beta\right)' \left(\frac{d\hat{\beta}_p}{k^{1/2}} - k^{1/2}\beta\right),$$
(2.6)

we obtain its solution, namely

$$\hat{\beta}_p(k,d) = (\tilde{X}'\tilde{X} + kI)^{-1} (\tilde{X}'\tilde{X} + dI)\hat{\beta}_p, \quad 0 < d < 1, \ d \le k,$$
(2.7)

where d and k are tuning parameters.

Then we obtain

$$\hat{f}_p(k,d) = S(y - X\hat{\beta}_p(k,d)).$$
 (2.8)

Because there is a formal resemblance between (2.7) and the Liu-type estimator of the linear model, we call it a Liu-type estimator of the partially linear model.

Remark 1. Let k = d, and suppose that $\tilde{X}'\tilde{X}$ is of full rank, then the Liu-type estimator becomes the two-step estimator of a partially linear model.

Remark 2. Let f(t) = 0, then the Liu-type estimator becomes Liu-type estimator in a linear model.

3. Comparison of Liu-type estimator $\hat{\beta}_p(k, d)$ with two-step estimator $\hat{\beta}_{TS}$

In this section, we will give the comparison of the Liu-type estimator $\hat{\beta}_p(k, d)$ with two-step estimator $\hat{\beta}_p$ in the mean squared error (MSE) sense.

Theorem 1. Suppose rank(X) = p, and suppose that there exists a matrix *S* such that $rank[(I - S)X] = rank(\tilde{X}) = p$, then:

(a) for fixed k > 0:

Download English Version:

https://daneshyari.com/en/article/4627737

Download Persian Version:

https://daneshyari.com/article/4627737

Daneshyari.com