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a b s t r a c t

In this paper, we present a numerical method based on parametric quintic splines for the
regularized long wave (RLW) equation. The truncation error is analyzed and the method
shows that by choosing suitably parameters we can obtain various accuracy schemes.
Stability analysis of the method is studied and the numerical results show that the method
is unconditionally stable. The efficiency of the method is examined by evaluating the error
norms and conservation properties of mass, energy, and momentum. The numerical
simulations can validate and demonstrate the advantages of the method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The regularized long wave (RLW) equation is an important nonlinear wave equation. It can describe a lot of important
physical phenomena, so it plays a major role in the study of nonlinear dispersive waves [1]. Solitary waves are wave packets
or pulses propagating in nonlinear dispersive media [2]. Solitary waves interact with other solitary waves and their shapes
are not affected by a collision, except for a phase shift.

The RLW equation was first proposed by Peregrine to describe the behavior of the undulate bore [3]. Analytical solutions
of this problems are usually not available, especially when the nonlinear terms are involved [4,5]. Therefore, finding its
numerical solutions is of practical importance. Various numerical methods has been studied to solve the equation. These
include explicit multi-step method [6], non-polynomial spline method [7], conservative weighted finite difference scheme
[1], Least square method [8,9] and collocation method with quadratic B-splines [10,11], differential quadrature method
[12,13], Galerkin method, [14,15], integrated radial basis functions [16], finite difference methods [17], cubic B-splines
[18], least square cubic B-spline finite element method [19] and mesh-free method [20].

We consider the following regularized long wave (RLW) equation.

ut þ ux þ �uux � ruxxt ¼ 0; a < x < b; t > 0; ð1:1Þ

with the boundary conditions

uða; tÞ ¼ g1ðtÞ; uðb; tÞ ¼ g2ðtÞ; uxða; tÞ ¼ uxðb; tÞ ¼ 0; t P 0 ð1:2Þ

and the initial condition

uðx;0Þ ¼ f ðxÞ; a 6 x 6 b; ð1:3Þ
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where e and r are positive constants. This equation can model a large class of physical phenomena such as the nonlinear
transverse waves in shallow water, ion acoustic and magnetohydrodynamic waves in plasma, and longitudinal dispersive
waves in elastic rods, pressure waves in liquid–gas, bubble mixtures, and rotating flow down a tube [21,22] and so on.

The main purpose of this paper is to give a numerical method for the RLW equation, based on uniform mesh using
parametric quintic splines. This paper is organized as follows. In Section 2, construction of the method is presented. Stability
analysis of the method based on the von Neumann technique is given in Section 3. Section 4 is the computation of conserved
quantities and errors and order of convergence. Section 5 is devoted to numerical simulations. The last section is a brief
conclusion.

2. Construction of the method

A grid in the x; t plane is set up with grid points ðxi; tjÞ and uniform grid spacing h and k, where xi ¼ aþ ih;
h ¼ xiþ1 � xi; i ¼ 0;1;2; . . . ;N, and tj ¼ jk; j ¼ 0;1; . . ..

If SDðx; tj; sÞ ¼ SDðx; tjÞ is a parametric quintic spline satisfying the following differential equation

Sð4ÞD ðx; tjÞ þ s2Sð2ÞD ðx; tjÞ ¼ zQj
i þ �zQj

i�1; x 2 ½xi�1; xi�; ð2:1Þ

where z ¼ ðx� xi�1Þ=h; �z ¼ 1� z; Sð2ÞD ðxi; tjÞ ¼ Mj
i; Sð4ÞD ðxi; tjÞ ¼ Fj

i; Qj
i ¼ Fj

i þ s2Mj
i and s is a positive parameter. A parametric

quintic spline function reduces to a ordinary quintic spline as s! 0. which satisfies the following interpolation conditions

SDðxi�1; tjÞ ¼ uðxi�1; tjÞ; SDðxi; tjÞ ¼ uðxi; tjÞ: ð2:2Þ

Solving Eq. (2.1) and determining the four constants of integration using interpolation conditions, we have

SDðx; tjÞ ¼ zuj
i þ �zuj

i�1 þ
h2

3!
q3ðzÞM

j
i þ q3ð�zÞM

j
i�1

h i
þ h4

w4

w2

3!
q3ðzÞ � q1ðzÞ

� �
Fj

i þ
h4

w4

w2

3!
q3ð�zÞ � q1ð�zÞ

� �
Fj

i�1; ð2:3Þ

where uj
i ¼ uðxi; tjÞ; w ¼ hs; q1ðzÞ ¼ z� sinhðwzÞ

sinhðwÞ ; q3ðzÞ ¼ z3 � z.

The function SDðx; tjÞ on the interval ½xi; xiþ1� can be obtained with iþ 1 replacing i in Eq. (2.3).
Applying the continuity of the first and third derivatives, we obtain the following relations.

Mj
iþ1 þ 4Mj

i þMj
i�1 ¼

6

h2 uj
iþ1 � 2uj

i þ uj
i�1

� �
� 6h2ða1Fj

iþ1 þ 2b1Fj
i þ a1Fj

i�1Þ; ð2:4Þ

Mj
iþ1 � 2Mj

i þMj
i�1 ¼ h2ðaFj

iþ1 þ 2bFj
i þ aFj

i�1Þ; ð2:5Þ

where a ¼ 1
x2 xcosecðxÞ � 1½ �; b ¼ 1

x2 1�xcotðxÞ½ �; a1 ¼ 1
x2

1
6� a
� �

; b1 ¼ 1
x2

1
3� b
� �

; i ¼ 2;3; . . . ;N, and j ¼ 0;1; . . .,

From Eqs. (2.4) and (2.5), we obtain

pMj
iþ2 þ qMj

iþ1 þ sMj
i þ qMj

i�1 þ pMj
i�2 ¼

1

h2 auj
iþ2 þ 2ðb� aÞuj

iþ1 � 2ð2b� aÞuj
i þ 2ðb� aÞuj

i�1 þ auj
i�2

h i
; ð2:6Þ

where p ¼ a1 þ a
6 ; q ¼ 2aþb

3 � 2ða1 � b1Þ; s ¼ aþ4b
3 þ 2ða1 � 2b1Þ.

Consider Eq. (2.6) at two time level j and jþ 1 and subtract them, we obtain

pðMjþ1
iþ2 �Mj

iþ2Þ þ qðMjþ1
iþ1 �Mj

iþ1Þ þ sðMjþ1
i �Mj

iÞ þ qðMjþ1
i�1 �Mj

i�1Þ þ pðMjþ1
i�2 �Mj

i�2Þ

¼ 1

h2 aðujþ1
iþ2 � uj

iþ2Þ þ 2ðb� aÞðujþ1
iþ1 � uj

iþ1Þ � 2ð2b� aÞðujþ1
i � uj

iÞ þ 2ðb� aÞðujþ1
i�1 � uj

i�1Þ þ aðujþ1
i�2 � ujþ1

i�2Þ
h i

: ð2:7Þ

Using operator notations Euðx; tÞ ¼ uðxþ h; tÞ; Duðx; tÞ ¼ uxðx; tÞ; Iuðx; tÞ ¼ uðx; tÞ; E ¼ ehD and expanding them in powers
of hD, we obtain

Mjþ1
i �Mj

i ¼ ðu2xÞjþ1
i � ðu2xÞji

h i
� h2

6
1
2
þ 6ða1 þ b1Þ

aþ b

� �
ðu4xÞjþ1

i � ðu4xÞji
h i

þ h4
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1
2
� 30ð2a1 � b1Þ

ðaþ bÞ þ 90aða1 þ b1Þ
ðaþ bÞ2

þ 180ða1 þ b1Þ
2

ðaþ bÞ2

" #
ðu6xÞjþ1

i � ðu6xÞji
h i

þ Oðh6Þ; ð2:8Þ

where uix ¼ @iu
@xi ,

From Eq. (2.8), when a ¼ 6
5 �9a1 þ b1ð Þ; b ¼ � 6

5 a1 þ 11b1ð Þ, we obtain

u2xðxi; tjþ1Þ � u2xðxi; tjÞ ¼ Mjþ1
i �Mj

i þ Oðh6Þ; ð2:9Þ

Eq. (1.1) can be rewritten as

r @

@t
uxx � u=rð Þ ¼ ux þ �uux; ð2:10Þ
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