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a b s t r a c t

In this paper, we analyze the convergence of the two-step modulus-based matrix splitting
iteration method for the large sparse linear complementarity problems, which is proposed
by Zhang (2011) [7]. The convergence conditions are presented when the system matrix is
a positive definite matrix and an Hþ-matrix, respectively. In particular, we establish new
convergence conditions when the system matrix is an Hþ-matrix.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let Rn and Rn�n be the n-dimensional real vector space and the n-by-n real matrix space, respectively. In this paper, we
consider the linear complementarity problem, abbreviated as LCP (q;A), for finding a pair of real vectors w and z 2 Rn such
that

w :¼ Azþ q P 0; z P 0 and z>w ¼ 0; ð1:1Þ

where A ¼ ðaijÞ 2 Rn�n is a given large, sparse and real matrix, and q ¼ ðq1; q2; . . . ; qnÞ
> 2 Rn is a given real vector. Here, the

notation ‘P’ denotes the componentwise defined partial ordering between two vectors and the superscript ‘>’ denotes the
transpose of a vector. For detailed descriptions about this problem and its practical backgrounds, we can see [1].

To solve the LCP (q;A) more flexible and practical in actual computation, Bai [2] proposed a class of modulus-based matrix
splitting iteration methods, which includes the modulus iteration method [3], the modified modulus method [4] and the
extrapolated modulus method [5,6]. Moreover, this method was extended to many methods by making use of the matrix
splitting or multisplitting techniques. For example, the two-step modulus-based matrix splitting iteration method [7], the
modulus-based synchronous multisplitting iteration method [8], the modulus-based synchronous two-stage multisplitting
iteration method [9] and the accelerated modulus-based matrix splitting iteration method [10]. Numerical experiments have
shown that these modulus-based iteration methods are powerful tools for solving the LCP (q;A).

In this paper, we study the convergence of the two-step modulus-based matrix splitting iteration method for the LCP
(q;A) when the system matrix A is a positive definite matrix and an Hþ-matrix, respectively. Note that Zhang in [7] only con-
sidered the system matrix A is an Hþ-matrix. In particular, we give and prove the convergence theorem from different view
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when the system matrix A is an Hþ-matrix. And we can see that there are some differences between our convergence con-
ditions and the conditions of Theorem 4.2 in [7].

2. Preliminaries

In this section, we recall several necessary notations, definitions and lemmas; see [1,11–13].
For two given real m-by-n matrices A ¼ ðaijÞ and B ¼ ðbijÞ; A P B (A > B) if aij P bij (aij > bij) holds for all 1 6 i 6 m and

1 6 j 6 n. A matrix A ¼ ðaijÞ 2 Rm�n is said to be nonnegative (positive) if its entries satisfy aij P 0 (aij > 0) for all
1 6 i 6 m and 1 6 j 6 n. Let jAj ¼ ðjaijjÞ 2 Rm�n be the absolute value and A> be the transpose of the matrix A. These notations
can easily be specified to vectors in Rn.

A square matrix A 2 Rn�n is called a Z-matrix if its off-diagonal entries are nonpositive. A nonsingular matrix A 2 Rn�n is
called an M-matrix if it is a Z-matrix and A�1 P 0; and an H-matrix if its comparison matrix hAi ¼ ðhaiijÞ 2 Rn�n is an M-
matrix, where

haiij ¼
jaijj for i ¼ j;

�jaijj for i – j;

�
i; j ¼ 1;2; . . . ;n:

In particular, an H-matrix having positive diagonal entries is called an Hþ-matrix. Moreover, A matrix A is said to be sym-
metric positive definite if it is symmetric and satisfies x>Ax > 0 for all x 2 Rn n f0g, and is said to be positive definite if its
symmetric part ðA> þ AÞ=2 is positive definite; see [2,14].

Let A 2 Rn�n be a given matrix and M;N 2 Rn�n satisfy A ¼ M � N. Then A ¼ M � N is called a splitting of the matrix A if M
is nonsingular. The splitting A ¼ M � N is called a convergent splitting if qðM�1NÞ < 1; an M-splitting if M is an M-matrix and
N P 0; an H-splitting if hMi � jNj is an M-matrix; and an H-compatible splitting if hAi ¼ hMi � jNj; see [14,13,15].

A 2 Rn�n is called a P-matrix if all of its principle minors are positive. It follows that a matrix A is a P-matrix if and only if
the LCP (q;A) has a unique solution for all q 2 Rn, and a nondegenerate matrix if and only if the LCP (q;A) has a finite number
(possibly zero) of solutions for all q 2 Rn. A sufficient condition for the matrix A to be a P-matrix is that A is a positive definite
matrix or an Hþ-matrix; see [2,14,16,17].

Now, we recall basic and useful properties of a Z-matrix, an M-matrix and an H-matrix.

Lemma 2.1 [15]. Let A 2 Rn�n be an M-matrix and B 2 Rn�n be a Z-matrix. If A 6 B, then B is an M-matrix.

Lemma 2.2 [18]. Let A 2 Rn�n be an H-matrix and A ¼ D� B, where D is the diagonal part of the matrix A. Then the following
statements hold true:

(i) A is nonsingular and jAj�1
6 hAi�1;

(ii) jDj is nonsingular and qðjDj�1jBjÞ < 1.

For a nonnegative matrix A 2 Rn�n, if there exist a positive vector v 2 Rn and two nonnegative constants a; b 2 R such that
av 6 Av 6 bv , then a 6 qðAÞ 6 b. In particular, if av < Av < bv , then a < qðAÞ < b; see [13]. Thus, we can easily obtain the
following lemma.

Lemma 2.3. For a nonnegative matrix A 2 Rn�n, if there exists a positive vector v 2 Rn such that Av < v , then qðAÞ < 1.

3. Convergence theorems

In this section, we establish the convergence theorems for the two-step modulus-based matrix splitting iteration method
when the system matrix A is a positive definite matrix and an Hþ-matrix.

Let A ¼ Mi � Ni ði ¼ 1;2Þ be two splittings of the matrix A 2 Rn�n; X1; X2 be n� n nonnegative diagonal matrices, and
X; C be n� n positive diagonal matrices such that X ¼ X1 þX2. If ðz�; w�Þ is a solution of the LCP (q;A), then
x� ¼ 1

2 ðC
�1z� �X�1w�Þ satisfies the implicit fixed-point equations

ðM1CþX1Þx� ¼ ðN1C�X2Þx� þ ðX� ACÞjx�j � q;

ðM2CþX1Þx� ¼ ðN2C�X2Þx� þ ðX� ACÞjx�j � q:

�
ð3:1Þ

Based on those and set X1 ¼ X; X2 ¼ 0 and C ¼ 1
c I, Zhang [7] presented the following two-step modulus-based matrix

splitting iteration method.

Method 1 (The two-step modulus-based matrix splitting iteration method for the LCP (q;A)). Let A ¼ Mi � Ni ði ¼ 1;2Þ be two
splittings of the matrix A 2 Rn�n. Given an initial vector xð0Þ 2 Rn, compute xðkþ1Þ 2 Rn by solving two linear systems
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