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a b s t r a c t

Epidemic models can be used to describe the process of epidemic spreading and provide
some information on disease control. In this paper, we investigated a spatial epidemic
model with saturated incidence rate. We obtained some qualitative behavior of the epi-
demic model, including dissipation, persistence, stability and so on, which well enrich
the theory of spatial epidemic models.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In mathematical modeling of disease transmission, Kermack and McKendrick posed a classical epidemic model in 1927
[6]. The total population at t moment is divided into three groups: susceptible, infectious and recovered, where SðtÞ is the
number of susceptible, IðtÞ is the number of infectious, RðtÞ is the number of the recovered. They assumed that the contact
rate between susceptible and infectious was proportional to the number of the population. Obviously, this assumption was
not reasonable.

In 1973, after studying cholera occurred in Bari of Italy, Capasso and Serio introduced a saturation incidence gðIÞS into the
epidemic models [2], which described the contact of infectious individuals and susceptible individuals, and

gðIÞ ¼ kI
1þ aI

;

where kI represents infectivity, 1=ð1þ aIÞ is inhibitions from changes of behaviors of susceptible individuals as the number
of susceptible increases. When the number of infectious increases, gðIÞ tends to a saturated level.

Nonlinear incidence rate

hðIÞ ¼ kI2

1þ aI2 :

was also considered in epidemic models [10], and rich dynamics were obtained including a limit cycle, two limit cycles,
homo-clinic cycles and so on. However, one can find that

g0ðIÞ ¼ kð1þ aIÞ � akI

ð1þ aIÞ2
¼ k

ð1þ aIÞ2
> 0:
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and

h0ðIÞ ¼ kpIð1þ aI2Þ � akqI3

ð1þ aI2Þ2
¼ kpI

ð1þ aI2Þ2
> 0:

That is to say that these incidences are all monotonic, which means that the contact rate of infectious individual and sus-
ceptible individual increases with the number of infectious individual increases.

In fact, this situation is not in line with the actual case. For such reason, Xiao and Ruan introduced non-monotone inci-
dence kI=ð1þ aI2Þ to the epidemic models [23]. When the number of infectious gradually increased, it described the psycho-
logical effect of certain serious disease on the community. They showed that either the number of infective individuals tends
to zero as time evolves or the disease persists. However, the epidemic model can not undergo any bifurcations. In Ref. [24], a
non-monotone incidence rate kI=ð1þ bI þ aI2Þ was introduced to an epidemic model and obtained rich bifurcation
behaviors.

From the biological point of view, individual organisms are distributed in space and typically interact with the physical
environment and other organisms in their spatial neighborhood [1,17,18,21]. The diffusion of the population is aim to look
for food and escape from high risk of disease [16]. For the first case, the individual diffuses towards the direction of the low
population density to obtain more abundant resource. And for the second case, the individual will go along the gradient of
the infected individuals to avoid infectious with higher infection rate [8].

In Ref. [9], basing on the analysis of the characteristic equation and Lyapunov function, the authors discussed the local
and global stability of the endemic equilibrium in an epidemic model. For the corresponding reaction–diffusion model of
infectious diseases, they obtained the condition of global asymptotical stability of the endemic equilibrium. Moreover, the
stochastic model was studied in detail. However, there is little knowledge on the dynamics of infectious disease models with
non-monotone saturated incidence. As a result, we want to investigate the dynamics of a spatial epidemic model and find the
differences between non-monotone saturated incidence and monotone saturated incidence.

In this paper, we will present a spatial epidemic model with non-monotonic incidence of saturated mass action and inves-
tigate its dynamical behavior. In Section 2, we establish an epidemic model and give the biological meanings of parameters.
In Section 3, we show dissipation, persistence and stability of the spatial epidemic models. Finally, some conclusions are
given in the last section.

2. An epidemic model

Firstly we consider an epidemic model which is as follows:

dS
dt
¼ b� dS� f ðIÞSþ dR; ð1aÞ

dI
dt
¼ f ðIÞS� ðdþ lÞI; ð1bÞ

dR
dt
¼ lI � ðdþ dÞR; ð1cÞ

where SðtÞ; IðtÞ; RðtÞ denote the number of the susceptible, infected, recovered at time t, respectively. b is the addition rate
of the population, d is the natural mortality, l is the natural recovery rate of infected individuals, and d is recovered rate.
Here, f ðIÞ ¼ kI=ð1þ bI þ aI2Þ, where k is proportional constant and a is positive constant. For all I P 0; b makes the formula
1þ bI þ aI2 > 0 established which needs b > �2

ffiffiffi
a
p

.
From the biological point of view, we are interested in dynamical behaviors of the system (1) in the region R3 of the first

quadrant. We first have the conclusion that Sþ I þ R ¼ b=d is the invariant manifold of system (1). As a result, system (1) is
equivalent to the following system:

dI
dt
¼ f ðIÞ b

d
� I � R

� �
� ðdþ lÞI; ð2aÞ

dR
dt
¼ lI � ðdþ dÞR: ð2bÞ

System (1) has disease free equilibrium and endemic equilibrium if and only if the system (2) has a disease-free equilib-
rium (0,0) and endemic equilibrium. Obviously, system (1) always has a disease-free equilibrium E0 ¼ b

b ;0;0
� �

for all the val-
ues of the parameters. In order to find the endemic equilibrium of system (2), we discuss the existence of the positive
equilibrium of the system (2).

For simplicity on symbols, we let

x ¼ kI
dþ d

; y ¼ kR
dþ d

; s ¼ ðdþ dÞt
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