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ARTICLE INFO ABSTRACT

Keywords: In this paper the oscillator with a restoring force of rational order of nonlinearity (named
Damped truly nonlinear oscillator truly nonlinear oscillators) and damping (positive and negative) is considered. The math-
Van der Pol oscillator ematical model of the oscillator is a second order differential equation with nonlinear

Ateb function terms of integer or noninteger and also linear and nonlinear damping terms. The approx-

imate solution of the generating differential equation (only the nonlinear deflection and
linear viscous damping terms exist) in the form of the Ateb function is obtained using
the harmonic balance method. Based on the generating solution the vibrations of the oscil-
lator with damping are obtained by extending the method of time variable amplitude, fre-
quency and phase. The special attention is given to the truly nonlinear damped-van der Pol
oscillator. The interaction of the viscous and van der Pol damping on the motion of the truly
nonlinear oscillator is investigated. The boundary for the limit cycle motion depending on
the order of nonlinearity is analyzed. The interactive influence of the damping coefficients
(positive and negative) and the order of nonlinearity on the frequency and the period of the
vibration is also analyzed. Two numerical examples are considered. The approximate ana-
lytical solutions are compared with numerically calculated ones. The obtained results are
in a good agreement.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Based on the experimental data a significant number of practical devices (like micro-electro-mechanical and nano-elec-
tro-mechanical devices, nanometer switches, vibration-, impact- and acoustic isolators, snap-through mechanisms, etc.), but
also phenomena in structural mechanics, nanotechnology, chemistry and physics, are modeled as truly nonlinear oscillators
with strong nonlinear stiffness and damping properties (see for example [1-3])

X+ c2xx|" " +f(x,%) =0, (1)

where ¢2 is a constant stiffness coefficient, o # 1 A o € R, is the order of stiffness nonlinearity (o is a rational number: inte-
ger or non-integer) and f (x, X) is the function which includes the dissipation in the system. Unfortunately, the analytical solv-
ing of such a strong nonlinear differential equation is not an easy task. In the most of the papers dealing with the problem the
model is simplified and some special cases of (1) are considered. Thus, the most of oscillators are assumed to be linear
(o = 1) and the additional function fis assumed to be multiplied with a small parameter ¢ < 1. Numerous analytical solving
procedures are developed for such linear differential equations with small nonlinearity (see for example [4]).
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During the last thirty years the investigations are extended to dynamics of the strong nonlinear oscillators of Duffing type
(see [5] and the reference list in it) and a large attention is given to the influence of the small viscous damping, which is
linearly proportional to the velocity, on the dynamics of the oscillator with cubic nonlinearity. According to the requirements
of the real physical system and engineering application also the influence of the quadratic damping is assumed [6-8]. Siewe
et al. [9] extended the investigation to the so called Rayleigh-Duffing oscillator with cubic and linear damping terms. The
role of nonlinear damping in soft Duffing oscillator with a simultaneous presence of viscous damping has been discussed
in [10,11]. Baltanas et al. [12] have studied the effect of including a nonlinear damping term, proportional to the power
of velocity, in the dynamics of double-well Duffing oscillator. In [13,14] the Duffing oscillator with positive linear and cubic
term and small linear and cubic damping are considered. Recently, Kanai and Yabuno [15] gives the qualitative analyses of
the Duffing oscillator with small positive linear and cubic damping and also of the Duffing oscillator driven with small van
der Pol damping. In [16] the oscillator with nonlinearity of integer order is analyzed. Approximate solution of the second
order differential equation with nonlinearity of polynomial type is assumed in the form of a trigonometric function which
is suitable for qualitative, but not also quantitative analyses of the problem. Besides, it is known that the force-deflection
relationship and also the damping are very often necessary to be modeled as nonlinear functions of noninteger order. Kova-
cic [17] gives the qualitative and quantitative analysis of a linear oscillator with additional small nonlinear stiffness and
damping terms of any noninteger order.

The intention of the paper is to generalize the previous investigation and to consider the model of a linear damped truly
nonlinear oscillator (force-deflection function is of any rational order o) with additional small nonlinear damping &f (x, X)

X+ KX+ Cxlx|" = ef (x,%), (2)

where k is the coefficient of the viscous damping. It is of special interest to analyze the motion of the damped truly nonlinear
oscillator with additional negative damping of the van der Pol type

X+ KX+ Cxlx|" = ex(1— | x%). (3)

The investigation published in this paper involved:

1. Determination of the approximate solution of the truly nonlinear oscillator of any order of nonlinearity (of integer or non-
integer type) with significant viscous damping

X+Kkx+c2x[x"1=0 (4)

and the proof of the correctness of that solution.

2. Generalization of the solution procedure for the linear damped truly nonlinear oscillator with additional nonlinear terms
(2).

3. Investigation of the linear damped truly nonlinear-van der Pol oscillator (3) and determination of the limits for cyclic
motion.

The results given in this paper are organized in six sections. In Section 2, using the generalized harmonic balance method
an approximate solution of the generating Eq. (4), in the form of the special Ateb function [18], is determined. The accuracy
of the generating solution is proved. In Section 3 we developed an analytical averaging method for solving of the differential
equation with small added terms (2). The solution procedure is based on the perturbation of the generating solution with
time variable amplitude, frequency and phase. In Section 4 the motion of the oscillator with van der Pol damping is consid-
ered. Analyzing the approximate solution for truly nonlinear and damped-van der Pol oscillator (3), the steady-state ampli-
tude of the limit cycle motion is obtained. Two numerical examples are considered: the linear damped Duffing-van der Pol
oscillator and a damped oscillator with nonlinearity of order 1/3-van der Pol oscillator. The analytically obtained results are
compared with numerical ones. The paper ends with Conclusion (Section 5). In Appendix A a short introduction to the Ateb
functions and their averaging is given.

2. Truly nonlinear oscillator with linear viscous damping

We derived the approximate solution for the viscous damped truly nonlinear oscillator of any rational order (4) using the
generalized harmonic balance method. Namely, we assumed the solution of (4) in the form
x = Aexp(—dt)ca(a, 1,y(t)) (5)

with
() =10 +/w(t)dt7 (6)

where ca is the cosine Ateb function (see Appendix A) which depends on the order of nonlinearity o and the unknown time
function y(t) which satisfies the relation (6), J is an unknown constant value, A and 0 are arbitrary constants and w(t) is an
unknown time function which has to be determined. Using the derivatives of the Ateb functions [18]
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