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Unsteady Navier-Stokes equations equations with high Reynolds number, using local projection stabilized method to control
High Reyflolqs numbgy spurious oscillations in the velocities due to dominant convection, or in the pressure due to
Local projection stabilized the velocity-pressure coupling. Using equal-order conforming elements in space and

Pressure stability condition

. Crank-Nicolson difference in time, we derive a fully discrete formulation. We prove stabil-
Crank-Nicolson method

ity and convergence of the approximate solution. The error estimates hold irrespective of
the Reynolds number, provided the exact solution is smooth. This result is comparable with
the streamline diffusion and continuous interior penalty methods.
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1. Introduction

The stable and accurate mixed finite element methods (FEMs) for the Navier-Stokes equations (NSEs) may suffer from
violating inf-sup stability condition and oscillating approximate solutions caused by high Reynolds number. The streamline
diffusion (SD) method has been a popular method to tackle these two issues in the past two decades, due to its good stability
and high accuracy. It was first proposed by Brooks and Hughes [1]. Johnson et al. [2] analyzed this method and extended it to
time-dependent problems using time-space elements. Johnson et al. [3] also proposed an SD method on NSEs based on a
streamfunction-vorticity formulation with divergence-free discrete velocities. Hansbo and Szepessy developed a velocity—
pressure SD method using time-space elements for the incompressible NSEs [4]. More related work of stabilized methods
for Stokes and NSEs can be found in [5-12].

When using SD method to solve time-dependent problems, one has to solve the discretization problem on d + 1-dimen-
sional space-time domain. Che Sun and his coworkers proposed and developed the finite difference streamline diffusion
(FDSD) method [6,7], by using finite difference discrete in time, which only need to solve the discretization problem on
d-dimensional space domain. This method not only reduces the computational work, but also keeps the good features of
SD method. The FDSD method was applied to unsteady NSEs in [8,9].

However, the SD/FDSD methods have some undesirable features: they introduce addition nonphysical coupling terms
between velocity and pressure; they produce inaccuracy numerical solutions near the boundary; they have to calculate
second derivative when using high order elements.

To overcome those disadvantages, alternative stabilized methods have been developed recently: the variational multi-
scale (VMS) methods [13-17], the orthogonal subscales methods [18], the continuous interior penalty (CIP) methods [19]
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and the local projection stabilize (LPS) methods [20-24]. These stabilized methods not only have good accuracy, but also
avoid the undesirable features of SD/FDSD methods. Pressure projection [25,26] is also a favored method for increasing
pressure stability. It was used to solve unsteady NSEs using equal-order elements successfully [27,28].

The subgrid scale eddy viscosity model is a numerical stabilization of convection dominated and underresolved flow. This
approach adds an artificial viscosity only on the fine scales. Layton generalized this concept for the stationary convection
diffusion problem [13], with error estimates almost comparable with the SD method. The subgrid scale eddy viscosity
method was applied on unsteady NSEs [14,15] to derive error estimates dependent on a reduced Reynolds number (that
means partially dependent on Reynolds number). This idea was used to derive a fully-discrete scheme using inf-sup unstable
elements for unsteady NSEs [16,17].

Both orthogonal subscales and LPS methods involve some kinds of orthogonal property, which can be viewed as special
cases of subgrid scale eddy viscosity method. The orthogonal subscales and LPS methods not only can be used to stabilize the
velocity, but also can be used to stabilize pressure. In [18], orthogonal subscales method on Oseen problems was analysed,
where the projection space is assumed to be continues. On the other hand, LPS method assumes the projection space to be
discontinues, which was easier to be implemented in parallel computing. LPS method was first introduced to stabilize the
Stokes problems [20]. Since then, several researches were done to develop the LPS method. LPS method on stationary Oseen
equation was analysed in [21,22,24,23]. LPS method on stationary NSEs was also analyzed in [24], but the error estimates are
dependent on Reynolds number.

It is natural to wonder how to use LPS method to solve unsteady NSEs and to obtain comparable numerical results with
SD/FESD [4,12,8] and CIP [19] methods. This motivates our research. The key question for the (stabilized) FEMs for NSEs with
high Reynolds number is: how to derive the error estimates held irrespective of the Reynolds number. The SD [4,12,8] and
CIP [19] methods deal with this point by adding nonlinear and jump stabilized terms, respectively. In this paper, we propose
and analyze a Crank-Nicolson scheme to solve unsteady NSEs with high Reynolds number, using LPS method to stabilize
both velocities and pressure. Unlike the SD/FDSD methods [4,12,8] and semi-discrete CIP method [19], there are no nonlinear
or jump stabilized terms introduced in our scheme. This makes our method much easier to be implemented. For the initial
data we use Ritz-projection instead of L>-projection to avoid the inaccuracy pressure close to initial moment. The almost
absolute stability and error estimates held irrespective of the Reynolds number are proved. With suitable choice of
parameters, our method’s error estimates are quite comparable with the SD [4] and CIP [19] methods’ error estimates.
We implement two numerical experiments to confirm and illustrate our theoretical analysis.

An outline of the paper is as follows. In Section 2, we present necessary notations. In Section 3 we propose and analyze
the stability of our method. In Section 4 we give error estimates for our scheme. In Section 5 we give some numerical
experiments. In Section 6 we conclude the whole paper.

Throughout this paper, we use C to denote a positive constant independent of At, h and v, not necessarily the same at
each occurrence.

2. Basic notations

Let Q € R? (d = 2,3) be a bounded domain with polygonal or polyhedral boundary " = 9Q. Let W™ (Q), W{'*(Q) denote
the m-order Sobolev space on Q, | -| and |-| denote the norm and semi-norm on these spaces. When p =2, Hg' (Q) =
wg?(Q), H"(Q) =w™(Q) and | -lly =1l llmp |- lm =1 ln,» We denote the inner product of H"(Q) by (.,-), and
(,-) = (-,-)o- Let X denote a Banach space, the mapping ¢(x,t) : [0,T] — X, and

1/2

! 2
oo = ([ 10©d) . 160 = sup I91x(0) @

Vector analogs of the Sobolev spaces along with vector-valued functions are denoted by upper and lower case bold face
font, respectively, e.g., Hy(Q), L*(Q) and u.
Let I = [0,T], where T is a fixed positive constant. The flow of an incompressible fluid is governed by the incompressible
Navier-Stokes equations
u+u-Vu—-vAu+Vp=f inQxlI,
V-u=0 inQxI,
u=0 onl xI,
u(x,0) =up(x) in Q,

(2.2)

where u = u(x, t) € R? denotes the velocities, p = p(x, t) € R denotes the pressure and f = f(x, t) € R? denotes the body forces,
v = Re™! denotes the viscosity coefficient, Re denotes the Reynolds number. Defining V = Hy(Q), Q = L3(Q) := [*(Q)/R and

B(u,p;v,q) =v(Vu,Vo)— (V-v,p)+ (V-u,q), (2.3)

—_

b(w;u, v) :Z(W~Vu,v) —%(W~Vv,u). (2.4)
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