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a b s t r a c t

The evolution of bursting oscillations in a parametrically excited dynamical system with
order gap between the excited frequency and the natural frequency is investigated in this
paper. By regarding the periodic excited term as a slow-varying parameter, different forms
of bifurcations of the system are obtained. Base on the overlap between the bifurcation dia-
gram and the phase portrait, the mechanism of different types of bursting oscillations are
obtained. Furthermore, some phenomena in bursting oscillations such as symmetry break-
ing behavior are explained through the bifurcations occurring at the transitions between
the quiescent state (QS) and spiking state (SP).

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Many dynamical systems in physics, chemistry, biology and geo-physics involve multiple time scales [1,2], which often
behave in periodic bursting oscillations characterized by a combination of relatively large amplitude and nearly harmonic
small amplitude oscillations, conventionally denoted by NK with N and K corresponding to large and small amplitude oscil-
lations, respectively [3]. Bursting phenomena can be observed when the variables alternate between two states, in which the
quiescent state (QS) corresponds to the stage when all the variables are at rest or exhibit small amplitude oscillations, while
the spiking state (SP) corresponds to the stage when the variables behave in large amplitude oscillations [4]. At the transi-
tions between QS and SP, two important bifurcations can be found, i.e., bifurcation of a quiescent state that leads to repetitive
spiking and bifurcation of a spiking attractor that leads to quiescence [5].

Many results related to the effect of two time scales are presented, such as the symmetric bursting behaviors in the gen-
eralized FitzHugh-Nagumo model [6], cusp type bursting in photosensitive B-Z reaction [7], tea-cup attractor in ecological
model[8] and non-smooth bifurcation in the bursting oscillations for neuron models [9]. Up to now, most of the reports
are focused on the autonomous systems with obvious slow and fast subsystems [10], while for the non-autonomous systems
such as periodically excited oscillators, when there exists order gap between the excited frequency and natural frequency,
the dynamics may behave in relaxation oscillations since both two frequencies may be observed in the time-series [11]. No
obvious slow and fast subsystems can be defined, which may lead to the complication of analysis of QS and SP as well as the
related bifurcation forms [12]. Furthermore, the slow-fast analysis method [13] can not be directly employed to explain the
mechanism of the bursting, resulting in the problem how to explore characteristics of the bursting behaviors in non-auton-
omous systems [14].
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In this paper, we consider a typical parametrically excited self-exciting dynamo model [15] and take suitable parameter
values so that order gap exists between the excited frequency and the natural frequency to investigate the evolution of the
dynamics with special forms of two time scales, especially the bursting oscillations as well as the related mechanism.

2. Mathematical model

A three dimensional system of nonlinear ordinary differential equations has been established to describe the dynamics of
the self-exciting dynamo action in which a Faraday disk and coil are arranged in series with either capacitor or a motor [15].
The non-dimensional system governing the dynamo with periodic parametric excitation acting on one of the state variables
to control the behaviors can be written in the form

_x ¼ xðy� 1Þ � bz; _y ¼ að1� x2Þ � jy; _z ¼ x� ðqþwÞz; ð1Þ

where w ¼ A sinðXtÞ, represents the periodic parametric excitation with amplitude A and frequency X. Bifurcation properties
of (1) without the excitation have been investigated in details [14], in which the Hopf bifurcation may lead to the periodic
oscillations according to the natural frequency XN . Generally, when the periodic excitation is applied to the oscillator, the
dynamics may behave in 2-D torus with two frequencies XN and X for the case without resonance. However, when order
gap exists between XN and X, for example, X� XN , the effect of two time scales described by XNt and Xt appears, which
may lead to different types of bursting oscillations with the variation of parameters.

3. Bifurcation analysis

When there exists order gap between the excited frequency and the natural frequency, the effect of two time scales may
evolve in the system, which often behaves in bursting oscillations. Here we fix the excited frequency at X ¼ 0:05, which is far
smaller than the natural frequency XN , to investigate dynamics of the vector field.

Three equilibrium points for system (1) can be found, expressed by EQ 0ð0; a=j; 0Þ and EQ�ð�
ffiffiffiffi
D
p

; ð1� DÞa=j;�
ffiffiffiffi
D
p

=qÞ,
respectively, where D ¼ ½aðqþwÞ � jðbþ qþwÞ�=½aðqþwÞ�, the stabilities of which can be determined using the associated
characteristic equations, expressed by

ðkþ jÞ jk2 þ ðjqþ jwþ j� aÞkþ jqþ jwþ jb� aq� aw
� �

=j ¼ 0; ð2Þ

for EQ0 and

Fk� ¼ k3 þ a1k
2 þ a2kþ a3; ð3Þ

for EQ�, where

a1 ¼ ðqþwþ jþ 1Þ þ aðD� 1Þ=j;
a2 ¼ ðbþ jþ qþwþ 3aD� aþ qjþwjÞ þ aðqþwÞðD� 1Þ=j;
a3 ¼ jðqþwþ bÞ þ aðqþwÞð3D� 1Þ:

ð4Þ

Therefore, EQ 0 is stable for jqþ jwþ j� a > 0 and D < 0, while both EQ� are stable for a1a2 � a3 > 0; a3 > 0 and a1 > 0.
When the stability conditions are violated, different types of bifurcations may occur.

Pitchfork bifurcation. For D ¼ 0, the three equilibrium points may join together to form a cusp point, the eigenvalues of the
characteristic equation at which can be expressed by k1 ¼ 0; k2 ¼ �j and k3 ¼ a=j� ðqþw� 1Þ, implying pitchfork bifur-
cation may occur at

PF : jðqþwþ bÞ � aðqþwÞ ¼ 0; ð5Þ

corresponding to the colliding between the two symmetric nontrivial equilibrium and the trivial one.
Hopf bifurcation. A pair of pure imaginary eigenvalues, denoted by X2

H1 ¼ ðqþwþ bÞ � aðqþwÞ=j, related to the Eq. (2)
can be obtained for

HB1 : jðqþwþ 1Þ � a ¼ 0; ð6Þ

at which Hopf bifurcation associated with EQ0 may occur, leading to periodic oscillations, while for

HB2 : a1a2 � a3 ¼ 0; ða1 > 0; a3 > 0Þ; ð7Þ

Hopf bifurcations may take place, leading to possible periodic oscillations surrounding EQþ or EQ�, respectively.

Remarks

r The dynamical behaviors associated with the bifurcations can be demonstrated through numerical simulation by tak-
ing w as a real parameter.

Q. Bi et al. / Applied Mathematics and Computation 243 (2014) 482–491 483



Download English Version:

https://daneshyari.com/en/article/4627749

Download Persian Version:

https://daneshyari.com/article/4627749

Daneshyari.com

https://daneshyari.com/en/article/4627749
https://daneshyari.com/article/4627749
https://daneshyari.com

