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1. Introduction

Throughout this paper, we denote by I an arbitrary nondegenerate interval of the real line R, I° the interior of I, C*(I) the
set of all twice continuously differentiable real-valued functions on I and n > 2 an integer number. Consistent with [5], we
denote by P, the set of all nonnegative n-tuples p = (p;,...,p,) with the property that >°!' ,p; = 1. Consider the normalized
Jensen functional

jn(fvxv p) = ipj(xl) f<ipixi> = 0:
i=1 i=1

where f : C — R is a convex function on a convex set C in a real linear space, X = (X1,...,%,) € C" and p € P,.
Recently, Dragomir established the following theorem which compares two different normalized Jensen functionals.

Theorem A [5, Theorem 1]. Given p, q € Py, q; > 0 for each i € {1,...,n}, we have

09 min{Z1a.¢ ) < 7o xp) < max{ 2, xa) 1.1
1<i<n ( (; 1<i<n ( (;
for any convex function f : C — R and x € C".
The following two natural questions arise:
(I) Given x,y € C", what are (preferably the best) possible constants /., i > 0, depending only on x and y, such that

(0 <) AT(f,y,P) < Tulf, X, P) < UTu(f,Y,P) (12)

for any p € P, and convex function f : C — R.
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(I1) Given two convex functions f,g : C — R, what are (preferably the best) possible constants ., u > 0, depending only on f and
g, such that

(0 <) ;Ljn(gvx7p)gjn(ﬂxvp)glujn(gﬂxap) (13)
forany p € P, and x € C".

Regarding to the question (I) we have the following result which is an immediate consequence of Theorem 1.4.1 of [10]
due to Niculescu.

Theorem B. If c,d € [a, D], then
pif(€) +pof (d) = f(ps¢ + pod) < pif(a) + pof (b) — f(pra + pyb) (1.4)

for any convex function f : [a,b] — R and (p,,p,) € P>.

This yields the left hand inequality in (1.2) in the special case of n =2, C = [a,b]CR, x = (a,b) and y = (c,d), with . = 1.

In 2002, Dragomir and Scarmozzino [7] without exposing the question (II), considered implicitly the convex functions
In((1 —t)/t)) and —Int on (0,1/2] and gave a refinement and a converse to the Ky Fan inequality (3.1).

In this paper, motivating by Theorem A and generalizing the idea of [7], we give a positive answer to the existence of the
best possible constants 7, u > 0 in the question (II) in the important case of C = I C R and f, g € C. This yields some inter-
esting new inequalities in Information Theory and inner product spaces.

2. Main results
We may state the main theorem of this paper as follows which answers positively the question (II).

Theorem 2.1. Let f,g:] — R be two continuous and convex functions on I belonging to C*>(I°). Now, if g’ >0 on I° and
SUD;epe {%} < oo, then for any p € Py, and x € I,

//(t)
g'()
Moreover, the constants in (2.1) are best possible.

If the infimum (supremum) is not taken on I° and p; > 0 (i=1,...,n), then equality holds in the left (right) hand of (2.1) if and
only if Xy = --- = Xp.

(1)
g'(t)

0<) 'tlng{ } Tn(&X,p) < Tu(f.X,P) < stglp{ } Tn(8X,P): (2.1)

Proof. Let

st} e wesulag)

t
Setting h;(t) := f(t) — 2g(t) for all t € I, we have
f(t)

(0 =6 - ') =0 (L)

—),> >0 (tel).

Therefore, h; is convex on I, and so
n n n n n n
f (Zm) -ig (Zm) =h, (ZW«-) <Y opihi(x) = pif (i) — 2 _pig(x),
iz i1 P i-1 i-1 i-1
which implies that
A Tn(&.X,P) < Tn(f. X, D).
Similarly, setting h,(t) := f(t) — pg(t) for all t € I, we have
" "(t)
h t — " t _ 1 t — 1 t
10 =10 - ') =g 0L

Hence, concavity of h, on I implies that

f (Zm) - ug (me) =hy, (Zm) > > pihux) = > pif () — 1y _pig(x),
i=1 i=1 i=1 i=1 i=1 i=1
that is,
In(f.X,P) < U Tn(8X,P).

—u)<0 (ter).
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