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a b s t r a c t

In this paper, a numerical theory based on the mixed finite element method for a time-
fractional fourth-order partial differential equation (PDE) is presented and analyzed. An
auxiliary variable r ¼ Du is introduced, then the fourth-order equation can be split into
the coupled system of two second-order equations. The time Caputo-fractional derivative
is discretized by a finite difference method and the spatial direction is approximated by the
mixed finite element method. The stabilities based on a priori analysis for two variables are
discussed and some a priori error estimates in L2-norm for the scalar unknown u and the
variable r ¼ Du, are derived, respectively. Moreover, an a priori error result in H1-norm for
the scalar unknown u also is proved. For verifying the theoretical analysis, a numerical test
is made by using Matlab procedure.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Fractional partial differential equations (FPDEs), whose theoretical analysis and numerical methods have been paid close
attention by more and more math researchers, include many types based on the fractional derivative in different directions,
such as space FPDEs, time FPDEs and space–time FPDEs. So far, we have found a large number of numerical methods for
hunting for the numerical solutions of FPDEs. These methods include finite difference methods [1,4–6,2,9,10,12–
14,16,22,23,30], spectral methods [8], finite element methods [3,11,17–21,24], mixed finite element method [7], finite vol-
ume element method [9], DG method [15] and so forth.

In recent years, finite element methods for helping people to obtain the numerical solutions for FPDEs have been increas-
ingly concerned by most people. In the recent literatures, we find that the study of mixed finite element methods for FPDEs is
very limited. So far, only a paper [7] has been studied and analyzed for a mixed finite element method of time-FPDE with
second-order space derivative. However the theoretical analysis of the (mixed) finite element methods for solving the frac-
tional fourth-order PDEs have not been mentioned and reported.

In this article, our goal is to give some detailed numerical analysis of a mixed finite element method for studying the fol-
lowing time-FPDE with fourth-order derivative term

@auðx; tÞ
@ta

� Duþ D2u ¼ f ðx; tÞ; ðx; tÞ 2 X� J; ð1:1Þ
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with boundary condition

uðx; tÞ ¼ Duðx; tÞ ¼ 0; ðx; tÞ 2 @X� J; ð1:2Þ

and initial condition

uðx;0Þ ¼ u0ðxÞ; x 2 X; ð1:3Þ

where X � Rdðd 6 2Þ and J ¼ 0; Tð � are a bounded convex polygonal domain with Lipschitz continuous boundary @X and the
time interval with 0 < T <1, respectively. f ðx; tÞ and u0ðxÞ are given known functions and @auðx;tÞ

@ta is defined by the following
Caputo fractional derivative

@auðx; tÞ
@ta ¼ 1

Cð1� aÞ

Z t

0

@uðx; sÞ
@s

ds
ðt � sÞa

; 0 < a < 1: ð1:4Þ

Here, we approximate the Caputo fractional derivative by a finite difference method, formulate the mixed weak formu-
lation and fully discrete scheme, prove the stability of the fully discrete scheme and derive the theoretical analysis of some a
priori error results in detail.

The remaining parts of the article is as follow. In Section 2, we introduce a finite difference method for approximating the
Caputo time-fractional derivative, and then discuss the detailed proof of the truncation error. In Section 3, we formulate a
fully discrete mixed scheme for the fractional fourth-order PDE (1.1) and derive the stable results for two important variables
in detail. Moreover, we prove some a priori error estimates in L2 and H1-norms. In Section 4, we show some numerical results
to illustrate the rationality and effectiveness of our method. In Section 5, we make a brief summary about the presented
method and the future development.

Throughout this paper, we will denote C > 0 as a generic constant free of the space–time step parameters h and d. At the
same time, we define the natural inner product in L2ðXÞ or ðL2ðXÞÞ2 by ð�; �Þ with the corresponding norm k � k. The other
notations and definitions of Sobolev spaces can be easily followed in Ref. [29].

2. Approximation of time-fractional derivative

For the discretization for time-fractional derivative, let 0 ¼ t0 < t1 < t2 < � � � < tM ¼ T be a given partition of the time
interval ½0; T� with step length d ¼ T=M and nodes tn ¼ nd, for some positive integer M. For a smooth function / on ½0; T�,
define /n ¼ /ðtnÞ.

Lemma 2.1. Assuming that u 2 C2ð½0; T�Þ, then the time fractional derivative @auðx;tÞ
@ta at t ¼ tnþ1 can be approximated by, for

0 < a < 1

@auðx; tnþ1Þ
@ta ¼ d1�a

Cð2� aÞ ðnþ 1Þ1�a � ðnÞ1�a
h iu1 � u0

d

þ d1�a

Cð2� aÞ
Xn

k¼1

ðn� kþ 1Þ1�a � ðn� kÞ1�a
h i3ukþ1 � 4uk þ uk�1

2d
þ Enþ1

0 ; ð2:1Þ

where Enþ1
0 ¼ E0

1 þ Enþ1
2 ,

E0
1 ¼

1
Cð1� aÞ

Z t1

t0

s� t1 þ t0

2

� � @2uðx; t1
2
Þ

@t2 þ Oððs� t1
2
Þ2Þ þ Oðd2Þ

" #
ds

ðtnþ1 � sÞa
; ð2:2Þ

and

Enþ1
2 ¼ 1

Cð1� aÞ
Xn

k¼1

Z tkþ1

tk

ðs� tkþ1Þ
@2uðx; tkþ1Þ

@t2 þ Oððs� tkþ1Þ2Þ þ Oðd2Þ
" #

ds
ðtnþ1 � sÞa

: ð2:3Þ

Proof. Writing the integral (1.4) into two parts, we get

@auðx; tnþ1Þ
@ta ¼ 1

Cð1� aÞ

Z t1

t0

@uðx; sÞ
@s

ds
ðtnþ1 � sÞa

þ 1
Cð1� aÞ

Xn

k¼1

Z tkþ1

tk

@uðx; sÞ
@s

ds
ðtnþ1 � sÞa

¼: I þ II: ð2:4Þ

Then discretizing parts I and II by the similar approximated schemes to [8,7], respectively, we get the discrete formula (2.1)
with truncation errors (2.2) and (2.3). h
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