Microprocessors and Microsystems 38 (2014) 76-81

journal homepage: www.elsevier.com/locate/micpro

Contents lists available at ScienceDirect

Microprocessors and Microsystems

EMBEDDED
HARDWARE
DESIGN

A SystemC library for specifying pipeline abstractions ™

t A

Ed Harcourt **, James Perconti”

3 Department of Computer Science,' St. Lawrence University, Canton, NY, United States
b Department of Computer Science, Northeastern University, Boston, MA, United States

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:
Available online 25 November 2013

Keywords:

Pipeline

SystemC

Domain specific languages
System modeling

We describe a SystemC library for specifying, modeling, and simulating hardware pipelines. The library
includes a set of overloaded operators defining a pipeline expression language that allows the user to
quickly specify the architecture of the pipeline. The pipeline expression is used to derive the connectivity
of the SystemC modules that define the stages of the pipeline and to automatically insert latches and con-
trol modules between the stages to handle the proper routing of transactions through pipeline. Using the
SystemC simulator the pipeline can then be simulated and evaluated. The pipeline expression language
sits on top of SystemC, exposes all of the features of C++ and SystemC enabling the user to specify, eval-
uate, and analyze pipeline architectures.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Pipelining is an important and ubiquitous hardware implemen-
tation technique for increasing the performance of hardware. Pipe-
lining works by taking a function and partitioning it into stages that
operate concurrently thereby allowing multiple uses of the func-
tion to execute in parallel. Stages can be configured in a variety
of ways from simple linear pipelines to pipelines that have stages
that fork, merge, or contain feedback loops. Being able to quickly
model and evaluate various pipeline configurations in an existing
modeling framework such as SystemC is beneficial.

We describe sc_pipes, a SystemC library that defines a set of
operators useful for quickly specifying and modeling hardware
pipelines in SystemC. Our library also instantiates latches between
stages to properly handle the routing of data through the pipeline.
Using this library the modeler develops an expression on how
those stages interact.

We use SystemC [1,2] as our simulation framework because of
its support for system level modeling and simulation and because
it is embedded in C++, a general purpose programming language
with support for generic, polymorphic, object oriented program-
ming. Furthermore C++ is suitable for constructing domain specific
languages (DSLs) [3].

* This material is based upon work supported by the National Science Foundation
under Grant No. 0959713.
1 Department of Mathematics, Computer Science, and Statistics.
* Corresponding author.
E-mail addresses: edharcourt@stlawu.edu (E. Harcourt), jtpercon@ccs.neu.edu
(J. Perconti).

0141-9331/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2013.11.010

1.1. Outline

After reviewing related work in the next section we will intro-
duce the pipeline expression language in Section 3 along with
examples that use each of the operators. In Section 4 we describe
how a pipeline expression is elaborated into SystemC modules.
We close the paper by giving a realistic example of a pipelined
floating-point adder in Section 5 and conclude in Section 6.

2. Related work

Excellent overviews of pipelining, hardware implementation
techniques, and taxonomies are described in [4,5]. The compiler re-
search community has developed high-level notations for pipelines
to generate instruction schedulers [6,7]. Our notation is inspired by
that of [7]. The work in [8-10] describes notations for specifying
pipelines for downstream tools. Mishra and Dutt [11] describe
how to validate a pipeline specification written in the architectural
description language expression [12]. Petri Nets [13], Process Alge-
bras [14,15], and Higher-Order Logic [16,17] have been used to for-
mally model and simulate pipelines with all of the benefits that
formal notations bring such as verification and proving properties
about the models. The work in [20] automatically generates a pipe-
lined datapath, but the specification language is not rooted in an
existing general purpose framework such as SystemC. An earlier
version of this paper where the pipeline expression language and
many of the operators were not yet fully developed appeared in[18].

Our research builds on the above work in two fundamentally
different ways. The first is the set of pipeline operators we define
to construct our pipeline expression language. In [18] the operators
for forking were not fully developed and it used a static typing
scheme on ports as opposed to the more flexible dynamic typing

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2013.11.010&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2013.11.010
mailto:edharcourt@stlawu.edu
mailto:jtpercon@ccs.neu.edu
http://dx.doi.org/10.1016/j.micpro.2013.11.010
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

E. Harcourt,]. Perconti/Microprocessors and Microsystems 38 (2014) 76-81 77

on ports in sc_pipes. The second is how the overloaded operators
define a notation that is itself embedded in the system simulation
language SystemC, which is itself embedded in the general purpose
programming language C++. As [19] so aptly points out external
domain specific languages (DSLs) that are not embedded in a gen-
eral purpose language “tend to have short life-spans due to limited
support and portability, suffer from a lack of tools (particularly
debuggers), and it is usually impossible to use two DSLs in the
same source file.”

3. Pipeline operators

Pipelines specified in sc_pipes can be quite complex including
pipelines with feedback loops, and stages that fork or merge.
Beginning with simple linear pipelines we’ll examine how pipe-
lines are specified and modeled using sc_pipes. The pipeline
expression language is implemented by overloading the C++ oper-
ators +, *, /, %, |, and >>. We explore each of these in the following
sections.

3.1. Linear pipelines

In a linear pipeline stages are connected sequentially such that
stage n receives its input from stage n — 1 and sends its output to
stage n + 1 with the input for the first stage and the output of the
final stage managed by the testbench. For example, consider a
pipeline to compute the (somewhat arbitrary) function
f(x) = 2x? + 4x — 7. This could be implemented by any number of
architectures. Fig. 1 shows three possibilities; there are more. Only
the top two pipelines are linear. The third pipeline could compute
the more general function of nx? + 4x — 7 where n is the number of
times the first stage would need to be repeated.

In sc_pipes we specify the functionality of each stage as a Sys-
temC module using the special purpose sc_pipes port types
scp_in and scp_out (as opposed to the SystemC port type sc_in
and sc_out). Fig. 2 shows a generic SystemC module for a stage for
the pipelines in Fig. 1. The constructor takes an object that imple-
ments a C++ functor interface Function that overloads the func-
tion call operator (). This nicely encapsulates and abstracts the
function being called on line 8. Lines 2-3 in Fig. 2 declare an input
port and an output port for the stage. In sc_pipes ports are un-
typed and generic but reads and writes to the ports are typed (lines
7 and 9). The port types scp_in and scp_out are template special-
izations for the standard SystemC ports sc_in and sc_out. Lines
12-17 are boilerplate, declaring the module constructor and that
the stage is sensitive to changes on the input port in.

To specify the first pipeline from Fig. 1 the user declares the
stages and ties them together with a pipeline expression.

stage s1(fl), s2(f2), s3(£f3);
scp_pipeline p("simple", s1 >> s2 >> s3);

Sl S2 S3
Y @) "l) g @ |
SHl S2 S3 S4
Tl [T e [T G [T) [
S1 | S2 SO
) (+x) (+4x) ©) (.

Fig. 1. Three different pipeline architectures for computing 2x?+4x-7.

1 struct stage : sc_module {

2 scp_in in; // input

3 scp_out out; // output

4 Function f; // function computed
5

6 // executed when input changes

7 void run() {

8 int x = in.typed_read<int>();

9 x = f(x);

10 out.typed_write<int>(x);

11 }

12

13 SC_HAS_PROCESS (stage) ;

14 stage(sc_module_name name, Function f)
15 sc_module(name), f£(f), in(), out() {
16 SC_METHOD (run) ;

17 sensitive << in;

18 }

19 X

Fig. 2. Implementation of a stage for the pipelines in Fig. 1.

The >> operator is an overloaded C++ operator and specifies that
two pipeline stages are connected sequentially. A pipeline expres-
sion really specifies the path (or route) that transactions take
through the pipeline with connectivity being automatically de-
rived from the expression. By default every pipeline stage com-
pletes its operation in one clock cycle — though this can be
changed with the delay operator |. The expression (sl | 3) spec-
ifies that stage s1 takes three cycles to compute its result.

For stages with multiple inputs and outputs, ports are con-
nected between stages positionally. If stage A has output ports
outl, out2, etc. and stage B has input ports inl, in2, etc. then
outl is connected to inl and so on. For any two adjacent stages
connected sequentially the number of output ports on the first
stage must equal the number of input ports on the second stage.

The sc_pipes library inserts all of the connectivity code to
associate pipeline stages with SystemC modules connected
through SystemC signals. The library also inserts latches to store
intermediate results between stages. Latch insertion is complex
and will be discussed in Section 4. It is straightforward to construct
a SystemC testbench that instantiates the pipeline and drives it
with sample data to see that the first result is delivered after three
cycles and delivers a new result every clock cycle thereafter. Fig. 3
shows the output of the simulation as a space-time diagram for the
three stage linear pipeline from Fig. 1.

To model the second linear pipeline in Fig. 1 where stages one
and two are identical we need to ensure that SystemC instantiates
two separate modules, one for each stage.

stage s1(fl), s2(fl), s3(f2), s4(f3);
scp_pipeline p("simple2'", sl >> s2 >> s3 >> s4);

Notice that stages s1 and s2 are declared to be distinct hard-
ware stages that compute the same function f1 (x) = x.

3.2. Pipelines with feedback

The bottom pipeline in Fig. 1 contains a feedback loop on stage
1 that should be repeated twice to compute f. To model stage one

Download English Version:

https://daneshyari.com/en/article/462778

Download Persian Version:

https://daneshyari.com/article/462778

Daneshyari.com

https://daneshyari.com/en/article/462778
https://daneshyari.com/article/462778
https://daneshyari.com

