Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Critical oscillation constant for Euler-type dynamic equations on time scales

liří Vítovec

Brno University of Technology, CEITEC – Central European Institute of Technology, Technická 3058/10, 61600 Brno, Czech Republic

ARTICLE INFO

Keywords: Time scale Dynamic equation (Non)oscillation criteria Periodic coefficient

ABSTRACT

In this paper we study the second-order dynamic equation on the time scale \mathbb{T} of the form

$$(r(t)y^{\Delta})^{\Delta} + \frac{\gamma q(t)}{t\sigma(t)}y^{\sigma} = 0,$$

where *r*, *q* are positive rd-continuous periodic functions with $\inf\{r(t), t \in \mathbb{T}\} > 0$ and γ is an arbitrary real constant. This equation corresponds to Euler-type differential (resp. Euler-type difference) equation for continuous (resp. discrete) case. Our aim is to prove that this equation is conditionally oscillatory, i.e., there exists a constant $\Gamma > 0$ such that studied equation is oscillatory for $\gamma > \Gamma$ and non-oscillatory for $\gamma < \Gamma$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in the oscillation behavior of the second order linear dynamic equation

$$(r(t)y^{\Delta})^{\Delta} + p(t)y^{\sigma} = 0 \tag{L^{\Delta}E}$$

on a time scale \mathbb{T} , where $r(t) \neq 0$ for all $t \in \mathbb{T}$. Note that this equation covers linear differential equation (frequently called as a Sturm-Liouville differential equation)

$$(r(t)y')' + p(t)(y) = 0$$
 (LDE)

if $\mathbb{T} = \mathbb{R}$ and linear (Sturm–Liouville) difference equation

$$\Delta(r_k \Delta y_k) + p_k y_{k+1} = 0 \tag{L\Delta E}$$

if $\mathbb{T} = \mathbb{Z}$. Moreover, $(L^{\Delta}E)$ is a special type of general half-linear dynamic equation

$$[r(t)\Phi(y^{\Delta})]^{\Delta} + p(t)\Phi(y^{\sigma}) = 0$$

if $\Phi(y) = y$. Note that generally in (HL^AE), $\Phi(y) = |y|^{\alpha-1}$ sgny, $\alpha > 1$. Eq. (HL^AE) covers all of the mentioned equations.

Oscillation and non-oscillation criteria have been established at first for Eqs. (LDE) and (L Δ E), see, for example [1,12,29,30], and later naturally extended on $(L^{\Delta}E)$, $(HL^{\Delta}E)$ and its special half-linear continuous and discrete cases, see, for example [2,4,7,8,11,22-25]. Some non-oscillatory results for Eq. (L^ΔE), where the asymptotic behavior of its solutions is discussed, we can find in [3]. The asymptotic behavior results for Eq. (HL^{Δ}E) with $r(t) \equiv 1$, p(t) < 0 can be found e.g. in [26,33].

http://dx.doi.org/10.1016/j.amc.2014.06.066 0096-3003/© 2014 Elsevier Inc. All rights reserved.

CrossMark

$$(L^{\Delta}E)$$

 $(HL^{\Delta}E)$

E-mail addresses: vitovec@feec.vubtr.cz, jiri.vitovec@ceitec.vutbr.cz

In this paper, we consider $(L^{\Delta}E)$ in the form

$$(r(t)y^{\Delta})^{\Delta} + \frac{\gamma q(t)}{t\sigma(t)}y^{\sigma} = 0$$
(E^ΔE)

where r, q are positive rd-continuous periodic functions, $\inf\{r(t), t \in \mathbb{T}\} > 0$ and $\gamma \in \mathbb{R}$ is an arbitrary constant. We show that $(E^{\Delta}E)$ is the so-called *conditionally oscillatory*, that is, we prove an existence of positive constant Γ (the oscillation constant) such that $(E^{\Delta}E)$ is oscillatory for $\gamma > \Gamma$ and non-oscillatory for $\gamma < \Gamma$. Eq. $(E^{\Delta}E)$ is so-called Euler-type dynamic equation, because its special case (if $\mathbb{T} = \mathbb{R}$ and $r(t) \equiv p(t) \equiv 1$) is the well-known Euler differential equation

$$y''(t) + \frac{\gamma}{t^2}y = 0.$$

It was proved by Kneser in 1893, see [19], that this equations is conditionally oscillatory with the oscillation constant $\Gamma = 1/4$. The corresponding Euler difference equation

$$\Delta^2 y_k(t) + rac{\gamma}{k(k+1)} y_{k+1} = \mathbf{0}$$

is also conditionally oscillatory with the same oscillation constant $\Gamma = 1/4$, see [20]. In [10,28], the Kneser result are generalized for the equation

$$(r(t)y')' + \frac{\gamma q(t)}{t^2}y = 0, \tag{EDE}$$

where r, q are positive periodic continuous functions. We can see that (EDE) is the special continuous case of (E^ΔE). Further results that generalizes those in [10,28], we can find in [13,16], where the half-linear differential version of (EDE) is studied. Finally, the discrete case

$$\Delta(r_k\Delta y_k) + \frac{\gamma q_k}{k(k+1)}y_k = 0 \tag{E\Delta E}$$

of the Eq. $(E^{\Delta}E)$ is studied in [14] and corresponding results for the half-linear difference version of $(E\Delta E)$ we can find in [15].

Our aim is to generalize the results from [10,14], i.e., to find the oscillation constant for ($E^{\Delta}E$). The paper is organized as follows. In Section 2, we remind a notation on time scales and recall the basic oscillation theory for dynamic Eq. ($L^{\Delta}E$) with r > 0. Moreover, we prove some auxiliary lemmas and derive the adapted Riccati equation, which we will use later. Section 3 is devoted to announced oscillation result. Finally, in Section 4, we add some concluding remarks, examples and consequences of obtained theory.

2. Preliminaries

At the beginning, let us remind a notation on time scales. The theory of time scales was introduced by Stefan Hilger in his Ph.D. thesis in 1988, see [18], in order to unify the continuous and discrete calculus. Nowadays it is well-known calculus and often studied in applications. Remind that a time scale \mathbb{T} is an arbitrary nonempty closed subset of reals. Note that $[a,b]_{\mathbb{T}} := [a,b] \cap \mathbb{T}$ (resp. $(a,b)_{\mathbb{T}} := (a,b) \cap \mathbb{T}, (a,b]_{\mathbb{T}} := (a,b) \cap \mathbb{T}$ or $[a,b)_{\mathbb{T}} := [a,b) \cap \mathbb{T}$) stands for an arbitrary finite time scale interval. Moreover, $[a,\infty)_{\mathbb{T}} := [a,\infty) \cap \mathbb{T}$, resp. $(a,\infty)_{\mathbb{T}} := (a,\infty) \cap \mathbb{T}$, denotes an infinite time scale interval. Symbols σ , μ , f^{σ} , f^{Λ} and $\int_{a}^{b} f(s)\Delta s$ stand for the forward jump operator, graininess, $f \circ \sigma$, Δ -derivative of f and Δ -integral of f from a to b. Further, we use the symbols $C_{\rm rd}(\mathbb{T})$ and $C_{\rm rd}^{1}(\mathbb{T})$ for the class of rd-continuous and rd-continuous Δ -differentiable functions defined on the time scale \mathbb{T} . See [17], which is the initiating paper of the time scale theory, and [2] containing a lot of information on time scale calculus.

Now we recall a basic elements of the oscillation theory of dynamic equations on time scales. Throughout this paper, we assume that the time scale \mathbb{T} is unbounded from above, i.e., sup $\mathbb{T} = \infty$. Consider the second order dynamic equation

$$\left(r(t)y^{\Delta}\right)^{\Delta} + p(t)y^{\sigma} = 0 \tag{1}$$

on a time scale \mathbb{T} , where $p, r \in C_{rd}(\mathbb{T})$ and $\inf\{r(t), t \in \mathbb{T}\} > 0$. Notice that any solution y of (1) satisfies $ry^{\Delta} \in C_{rd}^{1}(\mathbb{T})$.

Further note that it is not sufficient to assume only r(t) > 0 (instead of $\inf\{r(t), t \in \mathbb{T}\} > 0$), because it may happen that $\lim_{t \to t_0-} r(t) = 0$ and $r(t_0) > 0$, which would not be convenient in our case. Indeed, we need $1/r \in C_{rd}(\mathbb{T})$ due to the integration of this function, which is now fulfilled, see also [21], where the similar problem is discussed.

Let us consider the initial value problem (IVP)

$$(r(t)y^{\Delta})^{\Delta} + p(t)y^{\sigma} = 0, \quad y(t_0) = A, \quad y^{\Delta}(t_0) = B$$
(2)

on \mathbb{T} , where $A, B \in \mathbb{R}, t_0 \in \mathbb{T}$.

Theorem 1 (Existence and Uniqueness [23, p. 380]). Let $p, r \in C_{rd}(\mathbb{T})$ and $\inf\{r(t), t \in \mathbb{T}\} > 0$. Then the IVP (2) has exactly one solution on \mathbb{T} .

Download English Version:

https://daneshyari.com/en/article/4627783

Download Persian Version:

https://daneshyari.com/article/4627783

Daneshyari.com