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ARTICLE INFO ABSTRACT

Keywords: In this paper we study the second-order dynamic equation on the time scale T of the form
Time scale 2q(0)

Dynamic equation (YA A + 70,

(Non)oscillation criteria (r(6?) [O'(t)y ’

Periodic coefficient where r, q are positive rd-continuous periodic functions with inf{r(t), t € T} > 0and y is

an arbitrary real constant. This equation corresponds to Euler-type differential (resp.
Euler-type difference) equation for continuous (resp. discrete) case. Our aim is to prove
that this equation is conditionally oscillatory, i.e., there exists a constant I' > 0 such that
studied equation is oscillatory for y > I' and non-oscillatory for y < I'.
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1. Introduction

We are interested in the oscillation behavior of the second order linear dynamic equation

(r(y™)" +p(e)y” =0 (L°E)

on a time scale T, where r(t) # 0 for all t € T. Note that this equation covers linear differential equation (frequently called as
a Sturm-Liouville differential equation)

(r©y) +p(t)(y) =0 (LDE)
if T = R and linear (Sturm-Liouville) difference equation
A(rkAYR) + DYk = 0 (LAE)
if T = Z. Moreover, (LE) is a special type of general half-linear dynamic equation
A
[r(t)@y*)]" +p(O)@(y") =0 (HL"E)

if ®(y) = y. Note that generally in (HLAE), ®(y) = |y|* 'sgny, a > 1. Eq. (HL*E) covers all of the mentioned equations.

Oscillation and non-oscillation criteria have been established at first for Eqs. (LDE) and (LAE), see, for example
[1,12,29,30], and later naturally extended on (LE), (HLAE) and its special half-linear continuous and discrete cases, see,
for example [2,4,7,8,11,22-25]. Some non-oscillatory results for Eq. (L*E), where the asymptotic behavior of its solutions
is discussed, we can find in [3]. The asymptotic behavior results for Eq. (HLAE) with r(t) = 1, p(t) < 0 can be found e.g. in
[26,33].
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In this paper, we consider (L“E) in the form

A\A Vq(t) o A
- E°E
(oY) + {55y =0 (E*E)
where r, g are positive rd-continuous periodic functions, inf{r(t), t € T} > 0 and y € R is an arbitrary constant. We show
that (EAE) is the so-called conditionally oscillatory, that is, we prove an existence of positive constant I" (the oscillation con-
stant) such that (EAE) is oscillatory for y > I'" and non-oscillatory for y < I'. Eq. (E*E) is so-called Euler-type dynamic
equation, because its special case (if T = R and r(t) = p(t) = 1) is the well-known Euler differential equation

7
t2
It was proved by Kneser in 1893, see [19], that this equations is conditionally oscillatory with the oscillation constant
I" = 1/4. The corresponding Euler difference equation

2 Y _
A%y, (t) + m)ﬁm =0

y'(t) + 5y =0.

is also conditionally oscillatory with the same oscillation constant I = 1/4, see [20]. In [10,28], the Kneser result are general-
ized for the equation

yq(t)
t2
where r, g are positive periodic continuous functions. We can see that (EDE) is the special continuous case of (E*E). Further

results that generalizes those in [10,28], we can find in [13,16], where the half-linear differential version of (EDE) is studied.
Finally, the discrete case

(r(ty) +

y=0, (EDE)

A(reAy) + V=0 (EAE)

Ydx
k(k+1)

of the Eq. (EAE) is studied in [ 14] and corresponding results for the half-linear difference version of (EAE) we can find in [15].

Our aim is to generalize the results from [10,14], i.e., to find the oscillation constant for (EAE). The paper is organized as
follows. In Section 2, we remind a notation on time scales and recall the basic oscillation theory for dynamic Eq. (L*E) with
r > 0. Moreover, we prove some auxiliary lemmas and derive the adapted Riccati equation, which we will use later. Section 3
is devoted to announced oscillation result. Finally, in Section 4, we add some concluding remarks, examples and conse-
quences of obtained theory.

2. Preliminaries

At the beginning, let us remind a notation on time scales. The theory of time scales was introduced by Stefan Hilger in his
Ph.D. thesis in 1988, see [ 18], in order to unify the continuous and discrete calculus. Nowadays it is well-known calculus and
often studied in applications. Remind that a time scale T is an arbitrary nonempty closed subset of reals. Note that
[a,b]; :=[a,b]NT (resp. (a,b); := (a,b)N T, (a,b]; :== (a,b] NT or [a,b); := [a,b) N T) stands for an arbitrary finite time scale
interval. Moreover, [a,co); :=[a,00) N T, resp. (a,oco); :=(a,00)NT, denotes an infinite time scale interval. Symbols
o, W, fo, f* and jff(s)As stand for the forward jump operator, graininess, f o g, A-derivative of f and A-integral of f from
a to b. Further, we use the symbols Ci4(T) and C.,(T) for the class of rd-continuous and rd-continuous A-differentiable
functions defined on the time scale T. See [17], which is the initiating paper of the time scale theory, and [2] containing a
lot of information on time scale calculus.

Now we recall a basic elements of the oscillation theory of dynamic equations on time scales. Throughout this paper, we
assume that the time scale T is unbounded from above, i.e., sup T = co. Consider the second order dynamic equation

(r(ty™)" +p(t)y” =0 (1)

on a time scale T, where p, r € C,q(T) and inf{r(t), t € T} > 0. Notice that any solution y of (1) satisfies ry* € C}y(T).
Further note that it is not sufficient to assume only r(t) > 0 (instead of inf{r(t), t € T} > 0), because it may happen that
lim;_,-r(t) = 0and r(to) > 0, which would not be convenient in our case. Indeed, we need 1/r € C,4(T) due to the integration
of this function, which is now fulfilled, see also [21], where the similar problem is discussed.
Let us consider the initial value problem (IVP)

(r(Oy)* +p(Oy” =0, y(to) =A, ¥ (to) =B 2

on T, where A, BeER, tp € T.

Theorem 1 (Existence and Uniqueness [23, p. 380]). Let p, r € C,4(T) and inf{r(t), t € T} > 0. Then the IVP (2) has exactly
one solution on T.
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