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a b s t r a c t

In this paper we study the second-order dynamic equation on the time scale T of the form

ðrðtÞyDÞD þ cqðtÞ
trðtÞ y

r ¼ 0;

where r; q are positive rd-continuous periodic functions with inffrðtÞ; t 2 Tg > 0 and c is
an arbitrary real constant. This equation corresponds to Euler-type differential (resp.
Euler-type difference) equation for continuous (resp. discrete) case. Our aim is to prove
that this equation is conditionally oscillatory, i.e., there exists a constant C > 0 such that
studied equation is oscillatory for c > C and non-oscillatory for c < C.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in the oscillation behavior of the second order linear dynamic equation

ðrðtÞyDÞD þ pðtÞyr ¼ 0 ðLDEÞ

on a time scale T, where rðtÞ – 0 for all t 2 T. Note that this equation covers linear differential equation (frequently called as
a Sturm–Liouville differential equation)

ðrðtÞy0Þ0 þ pðtÞðyÞ ¼ 0 ðLDEÞ

if T ¼ R and linear (Sturm–Liouville) difference equation

DðrkDykÞ þ pkykþ1 ¼ 0 ðLDEÞ

if T ¼ Z. Moreover, (LDE) is a special type of general half-linear dynamic equation

½rðtÞUðyDÞ�D þ pðtÞUðyrÞ ¼ 0 ðHLDEÞ

if UðyÞ ¼ y. Note that generally in (HLDE), UðyÞ ¼ jyja�1sgny; a > 1. Eq. (HLDE) covers all of the mentioned equations.
Oscillation and non-oscillation criteria have been established at first for Eqs. (LDE) and (LDE), see, for example

[1,12,29,30], and later naturally extended on (LDE), (HLDE) and its special half-linear continuous and discrete cases, see,
for example [2,4,7,8,11,22–25]. Some non-oscillatory results for Eq. (LDE), where the asymptotic behavior of its solutions
is discussed, we can find in [3]. The asymptotic behavior results for Eq. (HLDE) with rðtÞ � 1; pðtÞ < 0 can be found e.g. in
[26,33].
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In this paper, we consider (LDE) in the form

ðrðtÞyDÞD þ cqðtÞ
trðtÞ y

r ¼ 0 ðEDEÞ

where r; q are positive rd-continuous periodic functions, inffrðtÞ; t 2 Tg > 0 and c 2 R is an arbitrary constant. We show
that (EDE) is the so-called conditionally oscillatory, that is, we prove an existence of positive constant C (the oscillation con-
stant) such that (EDE) is oscillatory for c > C and non-oscillatory for c < C. Eq. (EDE) is so-called Euler-type dynamic
equation, because its special case (if T ¼ R and rðtÞ � pðtÞ � 1) is the well-known Euler differential equation

y00ðtÞ þ c
t2 y ¼ 0:

It was proved by Kneser in 1893, see [19], that this equations is conditionally oscillatory with the oscillation constant
C ¼ 1=4. The corresponding Euler difference equation

D2ykðtÞ þ
c

kðkþ 1Þ ykþ1 ¼ 0

is also conditionally oscillatory with the same oscillation constant C ¼ 1=4, see [20]. In [10,28], the Kneser result are general-
ized for the equation

ðrðtÞy0Þ0 þ cqðtÞ
t2 y ¼ 0; ðEDEÞ

where r; q are positive periodic continuous functions. We can see that (EDE) is the special continuous case of (EDE). Further
results that generalizes those in [10,28], we can find in [13,16], where the half-linear differential version of (EDE) is studied.
Finally, the discrete case

DðrkDykÞ þ
cqk

kðkþ 1Þ yk ¼ 0 ðEDEÞ

of the Eq. (EDE) is studied in [14] and corresponding results for the half-linear difference version of (EDE) we can find in [15].
Our aim is to generalize the results from [10,14], i.e., to find the oscillation constant for (EDE). The paper is organized as

follows. In Section 2, we remind a notation on time scales and recall the basic oscillation theory for dynamic Eq. (LDE) with
r > 0. Moreover, we prove some auxiliary lemmas and derive the adapted Riccati equation, which we will use later. Section 3
is devoted to announced oscillation result. Finally, in Section 4, we add some concluding remarks, examples and conse-
quences of obtained theory.

2. Preliminaries

At the beginning, let us remind a notation on time scales. The theory of time scales was introduced by Stefan Hilger in his
Ph.D. thesis in 1988, see [18], in order to unify the continuous and discrete calculus. Nowadays it is well-known calculus and
often studied in applications. Remind that a time scale T is an arbitrary nonempty closed subset of reals. Note that
½a; b�T :¼ ½a; b� \ T (resp. ða; bÞT :¼ ða; bÞ \ T; a; bð �T :¼ a; bð � \ T or a; b½ ÞT :¼ a; b½ Þ \ T) stands for an arbitrary finite time scale
interval. Moreover, a;1½ ÞT :¼ a;1½ Þ \ T, resp. ða;1ÞT :¼ ða;1Þ \ T, denotes an infinite time scale interval. Symbols
r; l; f r; f D and

R b
a f ðsÞDs stand for the forward jump operator, graininess, f � r, D-derivative of f and D-integral of f from

a to b. Further, we use the symbols CrdðTÞ and C1
rdðTÞ for the class of rd-continuous and rd-continuous D-differentiable

functions defined on the time scale T. See [17], which is the initiating paper of the time scale theory, and [2] containing a
lot of information on time scale calculus.

Now we recall a basic elements of the oscillation theory of dynamic equations on time scales. Throughout this paper, we
assume that the time scale T is unbounded from above, i.e., sup T ¼ 1. Consider the second order dynamic equation

ðrðtÞyDÞD þ pðtÞyr ¼ 0 ð1Þ

on a time scale T, where p; r 2 CrdðTÞ and inffrðtÞ; t 2 Tg > 0. Notice that any solution y of (1) satisfies ryD 2 C1
rdðTÞ.

Further note that it is not sufficient to assume only rðtÞ > 0 (instead of inffrðtÞ; t 2 Tg > 0), because it may happen that
limt!t0�rðtÞ ¼ 0 and rðt0Þ > 0, which would not be convenient in our case. Indeed, we need 1=r 2 CrdðTÞ due to the integration
of this function, which is now fulfilled, see also [21], where the similar problem is discussed.

Let us consider the initial value problem (IVP)

ðrðtÞyDÞD þ pðtÞyr ¼ 0; yðt0Þ ¼ A; yDðt0Þ ¼ B ð2Þ

on T, where A; B 2 R; t0 2 T.

Theorem 1 (Existence and Uniqueness [23, p. 380]). Let p; r 2 CrdðTÞ and inffrðtÞ; t 2 Tg > 0. Then the IVP (2) has exactly
one solution on T.
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