Critical oscillation constant for Euler-type dynamic equations on time scales

Jiří Vítovec

Brno University of Technology, CEITEC - Central European Institute of Technology, Technická 3058/10, 61600 Brno, Czech Republic

ARTICLE INFO

Keywords:

Time scale
Dynamic equation
(Non)oscillation criteria
Periodic coefficient

A B S T R A C T

In this paper we study the second-order dynamic equation on the time scale \mathbb{T} of the form

$$
\left(r(t) y^{\Delta}\right)^{\Delta}+\frac{\gamma q(t)}{t \sigma(t)} y^{\sigma}=0
$$

where r, q are positive rd-continuous periodic functions with $\inf \{r(t), t \in \mathbb{T}\}>0$ and γ is an arbitrary real constant. This equation corresponds to Euler-type differential (resp. Euler-type difference) equation for continuous (resp. discrete) case. Our aim is to prove that this equation is conditionally oscillatory, i.e., there exists a constant $\Gamma>0$ such that studied equation is oscillatory for $\gamma>\Gamma$ and non-oscillatory for $\gamma<\Gamma$.
(C) 2014 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in the oscillation behavior of the second order linear dynamic equation

$$
\left(r(t) y^{\Delta}\right)^{\Delta}+p(t) y^{\sigma}=0
$$

on a time scale \mathbb{T}, where $r(t) \neq 0$ for all $t \in \mathbb{T}$. Note that this equation covers linear differential equation (frequently called as a Sturm-Liouville differential equation)

$$
\begin{equation*}
\left(r(t) y^{\prime}\right)^{\prime}+p(t)(y)=0 \tag{LDE}
\end{equation*}
$$

if $\mathbb{T}=\mathbb{R}$ and linear (Sturm-Liouville) difference equation

$$
\Delta\left(r_{k} \Delta y_{k}\right)+p_{k} y_{k+1}=0
$$

if $\mathbb{T}=\mathbb{Z}$. Moreover, $\left(L^{\Delta} \mathrm{E}\right)$ is a special type of general half-linear dynamic equation

$$
\left[r(t) \Phi\left(y^{\Delta}\right)\right]^{\Delta}+p(t) \Phi\left(y^{\sigma}\right)=0
$$

if $\Phi(y)=y$. Note that generally in $\left(\mathrm{HL}^{\Delta} \mathrm{E}\right), \Phi(y)=|y|^{\alpha-1} \operatorname{sgn} y, \alpha>1$. Eq. ($\left.\mathrm{HL}^{\Delta} \mathrm{E}\right)$ covers all of the mentioned equations.
Oscillation and non-oscillation criteria have been established at first for Eqs. (LDE) and (L $\Delta \mathrm{E}$), see, for example $[1,12,29,30]$, and later naturally extended on $\left(L^{\Delta} E\right),\left(L^{\Delta} \mathrm{E}\right)$ and its special half-linear continuous and discrete cases, see, for example [2,4,7,8,11,22-25]. Some non-oscillatory results for Eq. ($L^{\Delta} \mathrm{E}$), where the asymptotic behavior of its solutions is discussed, we can find in [3]. The asymptotic behavior results for Eq. ($\mathrm{HL}^{\Delta} \mathrm{E}$) with $r(t) \equiv 1, p(t)<0$ can be found e.g. in [26,33].

[^0]In this paper, we consider $\left(L^{\Delta} E\right)$ in the form

$$
\left(r(t) y^{\Delta}\right)^{\Delta}+\frac{\gamma q(t)}{t \sigma(t)} y^{\sigma}=0
$$

where r, q are positive rd-continuous periodic functions, $\inf \{r(t), t \in \mathbb{T}\}>0$ and $\gamma \in \mathbb{R}$ is an arbitrary constant. We show that ($\mathrm{E}^{\Delta} \mathrm{E}$) is the so-called conditionally oscillatory, that is, we prove an existence of positive constant Γ (the oscillation constant) such that ($\mathrm{E}^{\Delta} \mathrm{E}$) is oscillatory for $\gamma>\Gamma$ and non-oscillatory for $\gamma<\Gamma$. Eq. ($\mathrm{E}^{\Delta} \mathrm{E}$) is so-called Euler-type dynamic equation, because its special case (if $\mathbb{T}=\mathbb{R}$ and $r(t) \equiv p(t) \equiv 1$) is the well-known Euler differential equation

$$
y^{\prime \prime}(t)+\frac{\gamma}{t^{2}} y=0
$$

It was proved by Kneser in 1893, see [19], that this equations is conditionally oscillatory with the oscillation constant $\Gamma=1 / 4$. The corresponding Euler difference equation

$$
\Delta^{2} y_{k}(t)+\frac{\gamma}{k(k+1)} y_{k+1}=0
$$

is also conditionally oscillatory with the same oscillation constant $\Gamma=1 / 4$, see [20]. In [10,28], the Kneser result are generalized for the equation

$$
\begin{equation*}
\left(r(t) y^{\prime}\right)^{\prime}+\frac{\gamma q(t)}{t^{2}} y=0 \tag{EDE}
\end{equation*}
$$

where r, q are positive periodic continuous functions. We can see that (EDE) is the special continuous case of ($\mathrm{E}^{\Delta} \mathrm{E}$). Further results that generalizes those in [10,28], we can find in [13,16], where the half-linear differential version of (EDE) is studied. Finally, the discrete case

$$
\Delta\left(r_{k} \Delta y_{k}\right)+\frac{\gamma q_{k}}{k(k+1)} y_{k}=0
$$

of the Eq. ($E^{\Delta} E$) is studied in [14] and corresponding results for the half-linear difference version of ($E \Delta E$) we can find in [15].
Our aim is to generalize the results from $[10,14]$, i.e., to find the oscillation constant for $\left(E^{\Delta} E\right)$. The paper is organized as follows. In Section 2, we remind a notation on time scales and recall the basic oscillation theory for dynamic Eq. ($\mathrm{L}^{\Delta} \mathrm{E}$) with $r>0$. Moreover, we prove some auxiliary lemmas and derive the adapted Riccati equation, which we will use later. Section 3 is devoted to announced oscillation result. Finally, in Section 4, we add some concluding remarks, examples and consequences of obtained theory.

2. Preliminaries

At the beginning, let us remind a notation on time scales. The theory of time scales was introduced by Stefan Hilger in his Ph.D. thesis in 1988, see [18], in order to unify the continuous and discrete calculus. Nowadays it is well-known calculus and often studied in applications. Remind that a time scale \mathbb{T} is an arbitrary nonempty closed subset of reals. Note that $[a, b]_{\mathbb{T}}:=[a, b] \cap \mathbb{T}\left(\right.$ resp. $(a, b)_{\mathbb{T}}:=(a, b) \cap \mathbb{T},(a, b]_{\mathbb{T}}:=(a, b] \cap \mathbb{T}$ or $\left.[a, b)_{\mathbb{T}}:=[a, b) \cap \mathbb{T}\right)$ stands for an arbitrary finite time scale interval. Moreover, $[a, \infty)_{\mathbb{T}}:=[a, \infty) \cap \mathbb{T}$, resp. $(a, \infty)_{\mathbb{T}}:=(a, \infty) \cap \mathbb{T}$, denotes an infinite time scale interval. Symbols $\sigma, \mu, f^{\sigma}, f^{\Delta}$ and $\int_{a}^{b} f(s) \Delta s$ stand for the forward jump operator, graininess, $f \circ \sigma, \Delta$-derivative of f and Δ-integral of f from a to b. Further, we use the symbols $C_{\mathrm{rd}}(\mathbb{T})$ and $C_{\mathrm{rd}}^{1}(\mathbb{T})$ for the class of rd-continuous and rd-continuous Δ-differentiable functions defined on the time scale \mathbb{T}. See [17], which is the initiating paper of the time scale theory, and [2] containing a lot of information on time scale calculus.

Now we recall a basic elements of the oscillation theory of dynamic equations on time scales. Throughout this paper, we assume that the time scale \mathbb{T} is unbounded from above, i.e., $\sup \mathbb{T}=\infty$. Consider the second order dynamic equation

$$
\begin{equation*}
\left(r(t) y^{\Delta}\right)^{\Delta}+p(t) y^{\sigma}=0 \tag{1}
\end{equation*}
$$

on a time scale \mathbb{T}, where $p, r \in C_{\mathrm{rd}}(\mathbb{T})$ and $\inf \{r(t), t \in \mathbb{T}\}>0$. Notice that any solution y of (1) satisfies $r y^{\Delta} \in C_{\mathrm{rd}}^{1}(\mathbb{T})$.
Further note that it is not sufficient to assume only $r(t)>0$ (instead of $\inf \{r(t), t \in \mathbb{T}\}>0)$, because it may happen that $\lim _{t \rightarrow t_{0}-} r(t)=0$ and $r\left(t_{0}\right)>0$, which would not be convenient in our case. Indeed, we need $1 / r \in C_{\mathrm{rd}}(\mathbb{T})$ due to the integration of this function, which is now fulfilled, see also [21], where the similar problem is discussed.

Let us consider the initial value problem (IVP)

$$
\begin{equation*}
\left(r(t) y^{\Delta}\right)^{\Delta}+p(t) y^{\sigma}=0, \quad y\left(t_{0}\right)=A, \quad y^{\Delta}\left(t_{0}\right)=B \tag{2}
\end{equation*}
$$

on \mathbb{T}, where $A, B \in \mathbb{R}, t_{0} \in \mathbb{T}$.
Theorem 1 (Existence and Uniqueness [23, p. 380]). Let $p, r \in C_{r d}(\mathbb{T})$ and $\inf \{r(t), t \in \mathbb{T}\}>0$. Then the IVP (2) has exactly one solution on \mathbb{T}.

https://daneshyari.com/en/article/4627783

Download Persian Version:
https://daneshyari.com/article/4627783

Daneshyari.com

[^0]: E-mail addresses: vitovec@feec.vubtr.cz, jiri.vitovec@ceitec.vutbr.cz

