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a b s t r a c t

This paper further investigates the problem of stability analysis for a kind of neural net-
works with variable delays and nonlinear impulses. With the help of M-matrix, the homeo-
morphism theory, some effective inequalities and analysis techniques, certain novel
criteria on the existence, uniqueness and exponential stability of the equilibrium point
have been established. Moreover, these criteria possess adjustable real parameters, which
extend and improve many existing results in the literature. In the end, two numerical
examples are provided to illustrate the validation of the theoretical results.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Over the past few decades, several kinds of neural networks [1–3] such as Hopfield neural networks, cellular neural net-
works, bidirectional associative memory neural networks (for short by HNNs, CNNs, BAMNNs, respectively) have received
considerable attentions because of their great potential applications in areas of signal processing, pattern recognition, asso-
ciative memory and optimization [4,5]. As we know, during the hardware implementation of neural networks, time delays
are inevitable due to finite switching speeds of the amplifiers and communication time, which may bring about complex
influence on the system such as oscillation and instability [6]. On the other hand, impulsive effects widely exist in many real-
istic networks [7,8], which may be caused by witching phenomenon, sudden changes, or other unexpected noise. Therefore,
it is more appropriate to take both delays and impulsive effects into account when modeling neural networks, and lots of
important stability results have been reported on HNNs, CNNs, BAMNNs with delays and impulses. One can refer to [9–
21] and references therein.

Recently, authors in [22] introduced a neural network of general type, which incorporated impulsive delayed HNNs,
CNNs, BAMNNs as its special cases by choosing suitable nonlinear terms fið�; �Þ and was formulated by the following form:

_xiðtÞ ¼ �cixiðtÞ þ fiðx1ðtÞ; . . . ; xnðtÞ; x1ðt � si1Þ; . . . ; xnðt � sinÞÞ þ Ii;

t > 0; t – tk; i 2 N , f1;2; . . . ;ng;
MxiðtkÞ ¼ xiðtkÞ � xiðt�k Þ ¼ Jikðxiðt�k ÞÞ; k 2 Z , f1;2; . . .g:

8><
>: ð1:1Þ

where the impulsive moments are such that 0 ¼ t0 < t1 < t2 < . . . and limt!1tk ¼ þ1. xiðtÞ are the state of neurons and
ci > 0 denote the passive decay rates. I ¼ ðI1; I2; . . . ; InÞT are the constant input vector. Under the constant delays case and
the linear impulsive disturbances to equilibrium point, some results on stability of model (1.1) have been obtained by
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Lyapunov functional method and spectral theory of matrix. However, it is an idealized assumption that the delays are invari-
able. Actually, the delays are time-varying [23–27], and the nonlinear impulsive perturbations are more commonly encoun-
tered in the real environment [28]. Due to these factors, we shall modify model (1.1) as follows:

_xiðtÞ ¼ �biðxiðtÞÞ þ fiðx1ðtÞ; . . . ; xnðtÞ; x1ðt � si1ðtÞÞ; . . . ; xnðt � sinðtÞÞÞ þ Ii;

t > 0; t – tk; i 2 N , f1;2; . . . ;ng;
xiðtkÞ ¼ hikðx1ðt�k Þ; . . . ; xnðt�k ÞÞ þ cik; k 2 Z , f1;2; . . .g;
xiðsÞ ¼ /iðsÞ; s 2 ½�s; 0�;
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where bið�Þ; f ið�; �Þ; hikð�Þ are the general nonlinear functions, which satisfy certain conditions defined later (see (A1)–(A3),
sijðtÞ are the transition delays, which are variable and bounded with 0 6 sijðtÞ 6 sij ði; j 2 NÞ and cik are the external impul-
sive inputs at time tk.

It is well known that stability analysis of neural networks is a prerequisite for their applications. For instance, in solving
optimization problems [29,30], the neural network must be designed to have one unique and globally stable equilibrium
point and there is a strong motivation to study the stability of neural networks. Until now, numerous stability criteria have
been established for variants of neural networks via different approaches [31–42]. In particular, in [31–36], several good
results are presented by the construction of Lyapunov functionals and the linear matrix inequality (LMI) techniques. It is
observed that, if the neural network model can be written in the vector–matrix form, then the LMI is an effective tool
because the obtained conditions are in terms of LMI and its validity can be easily checked by the LMI toolbox in Matlab. Since
the transition delays sijðtÞ are different and the impulsive functions hikð�Þmay be nonlinear in reality, the system (1.2) is not
be conveniently expressed by the vector–matrix form. So the LMI is not an appropriate approach to the stability analysis of
system (1.2). To best our knowledge, the M-matrix is also an important tool in stability analysis of neural networks. Inspired
by [37–42], we shall carry out a further analysis on stability of system (1.2) by M-matrix theory. The novelty of this paper lies
in combining a general norm k � kfd;r;1g, some nice-established inequalities and analysis techniques, a general M-matrix-
based criterion on the existence, uniqueness and stability of equilibrium point of system (1.2) with impulses has been
derived, which unifies and improves many previous works in [16,17,22–24,27,37,43–45]. Moreover, the impulsive parts
in system (1.2) are characterized by the general nonlinear functions, and this endows our results with wider applicability
in real life problems.

The rest of this paper is organized as follows. In Section 2, some notations, conditions, definitions and important lemmas
are presented. In Section 3, some improved criteria are established for the existence, uniqueness and global exponential sta-
bility of equilibrium point of system (1.2). In Section 4, two comparative examples with numerical simulations are given.
Finally, some conclusions are summarized in Section 5.

2. Preliminaries

In this section, we begin with some standard notations. Let R and Rn be the set of real numbers and n-dimensional vector
space, respectively. The symbol ð�ÞT stands for the transpose of a vector or matrix. For any x ¼ ðx1; x2; . . . ; xnÞT 2 Rn, its norm is

defined by kxkfd;r;1g ¼max16i6n d�
1
r

i jxij
n o

, where r P 1; di > 0; i 2 N. Clearly, the usual maximum norm k � k1 in Rn is a spe-

cial case of k � kfd;r;1g. We also use C , Cð½�s;0�;RnÞ to denote a set of all continuous functions from ½�s;0� to Rn, where
s ¼max16i;j6nfsijg. For any /ðsÞ 2 C, equipped with its induced norm k/k ¼ sups2½�s;0�k/ðsÞkfd;r;1g, then C is a Banach space.

Furthermore, we make the following conditions:

(A1) (Sign condition.) For i 2 N, each behaved function bið�Þ : R! R is continuous and there exists a constant ci > 0 such
that

signðx� yÞðbiðxÞ � biðyÞÞP cijx� yj;

where x; y 2 R.
(A2) (Lipschitz-type condition.) For i 2 N, each activation function fið�; �Þ : Rn �Rn ! R is continuous and there exist con-

stants aij > 0 and bij > 0 such that

fiðu1; . . . ;un; v1; . . . ;vnÞ � fi ~u1; . . . ; ~un; ~v1; . . . ; ~vnð Þj j 6
Xn

j¼1

aijjuj � ~ujj þ
Xn

j¼1

bijjv j � ~v jj;

where u ¼ ðu1; . . . ;unÞT ; v ¼ ðv1; . . . ;vnÞT ; ~u ¼ ð~u1; . . . ; ~unÞT ; ~v ¼ ð~v1; . . . ; ~vnÞT 2 Rn.
ðA3Þ (Lipschitz-type condition.) For i 2 N; k 2 Z, each impulsive function hikð�Þ : Rn ! R is continuous and there exists a

constant fðkÞij > 0 such that

hikðu1; . . . ;unÞ � hikð~u1; . . . ; ~unÞj j 6
Xn

j¼1

fðkÞij juj � ~ujj;

where u ¼ ðu1; . . . ;unÞT ; ~u ¼ ð~u1; . . . ; ~unÞT 2 Rn.
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