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a b s t r a c t

We prove a Sturmian separation theorem comparing the number of focal points of any
conjoined basis of a nonoscillatory and controllable (near1) symplectic difference system
with the number of focal points of the recessive solution at 1. We also present various
extensions of this statement.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the symplectic difference system

zkþ1 ¼ Skzk; k 2 Z; ð1Þ

where z 2 R2n and the matrices S 2 R2n�2n are symplectic, i.e.

ST
kJSk ¼ J ; J ¼

0 I

�I 0

� �
:

If we write S in the block form S ¼ A B
C D

� �
, system (1) can be written in the form

xkþ1 ¼ Akxk þ Bkuk; ukþ1 ¼ Ckxk þDkuk: ð2Þ

Our aim is to establish a discrete version of the ‘‘singular Sturmian theorem’’ for nonoscillatory and controllable systems
(1) which compares the number of focal points of the recessive solution with the number of focal points of any other con-
joined basis. The word ‘‘singular’’ reflects the fact that the recessive solution appears in this statement and shows that this
solution behaves, in a certain sense, as a limit for M !1 of the so-called principal solution at k ¼ M. We are motivated by
the recent papers [1,12] and we extend, among others, the results of the paper [7] where a kind of singular Sturmian theory is
established for linear Hamiltonian difference systems (which are a particular case of symplectic system (1)).

2. Preliminaries

The investigation of oscillatory properties of symplectic difference systems was initiated in [5], where the basic oscillation
and transformation theory of (1) is established. As a starting point of our treatment, let us recall the ‘‘regular’’ Sturmian sep-
aration theorems for solutions of (1) as established in [8] and independently in [15]. Together with (1) we will consider its
matrix version (referred to again as (1))
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Xkþ1 ¼ AkXk þ BkUk; Ukþ1 ¼ CkXk þDkUk;

where X; U are real n� n matrices. A 2n� n matrix solution Z ¼ X
U

� �
of (1) is said to be a conjoined basis if

rank
Xk

Uk

� �
¼ n and XT

k Uk ¼ UT
k Xk: ð3Þ

It can be shown that if (3) holds at one index, then it holds for all indices.
The following matrices were introduced in [18]

Mk ¼ ðI � Xkþ1Xykþ1ÞBk;

Tk ¼ I �My
kMk;

Pk ¼ TT
k XkXykþ1BkTk;

8>><
>>:

here y denotes the Moore–Penrose generalized inverse of the matrix indicated. Then obviously MkTk ¼ 0 and it can be shown

(see [18]) that the matrix Pk is symmetric. The multiplicity of a forward focal point of the conjoined basis Z ¼ X
U

� �
in the

interval ðk; kþ 1� is defined as the number

mðkÞ :¼ rankMk þ indPk;

where ind denotes the index, i.e., the number of negative eigenvalues, of the matrix indicated.
Similarly, following [10], we introduce the matrices

M̂k ¼ ðI � XkXykÞB
T
k ;

T̂k ¼ I � M̂y
kM̂k;

P̂k ¼ T̂T
k Xkþ1XykB

T
k T̂k:

8>><
>>: ð4Þ

Using the matrices in (4), the multiplicity of a backward focal point in the interval ½k; kþ 1Þ is defined as the number

m�ðkÞ :¼ rankM̂k þ ind P̂k:

The definition of a backward focal point is essentially the idea of the definition of the forward focal point applied to the
reversed symplectic system

zk ¼ S�1
k zkþ1; S�1

k ¼
DT

k �BT
k

�CT
k AT

k

 !
: ð5Þ

The ‘‘regular’’ Sturmian separation theorems which we are going to extend in our paper read as follows. The first state-
ment is a ‘‘reversed’’ version of [8, Theorem 1.3] (‘‘reversed’’ means that it is Theorem 1.3 of [8] applied to the reversed sys-
tem (5)), and it is proved using a variational argument (quadratic functional associated with (1) and Picone’s identity). The
second statement is formulated in [15] and it is proved via the comparative index of conjoined bases of (1). In both state-
ments and later on in our paper, all focal points are counted with their multiplicities.

Proposition 1. Let Z½M� ¼ X½M�

U½M�

� �
be the principal solution of (1) at k ¼ M, i.e., the conjoined basis given by the initial condition

X½M�M ¼ 0; U½M�M ¼ I, and let p�MðNÞ denote its number of backward focal points in a discrete interval ½N;MÞ. Then any other conjoined

basis of (1) has in ½N;MÞ at least p�MðNÞ backward focal points, i.e., if Z ¼ X
U

� �
is any other conjoined basis and p�ðNÞ denotes its

number of backward focal points in ½N;MÞ, we have the inequality

p�MðNÞ 6 p�ðNÞ:

Proposition 2. Let Z½0� ¼ X ½0�

U½0�

� �
; Z½N� ¼ X½N�

U½N�

� �
be the conjoined bases of (1) given by the conditions

X½0�0 ¼ 0; U½0�0 ¼ I; X ½N�N ¼ 0; U½N�N ¼ I, i.e., Z½0� and Z½N� are the principal solutions of (1) at k ¼ 0 and k ¼ N, respectively. Then the

number of forward focal points of Z½0� in ð0;N� equals the number of backward focal points of Z½N� in ½0;NÞ.
Next we recall some concepts concerning behavior of solutions of (1) in infinite discrete intervals. System (1) is said to be

nonoscillatory at þ1 if there exists M 2 N such that the principal solution of (1) at M has no forward focal point in the inter-
val ðM;1Þ. Similarly, (1) is nonoscillatory at �1 if there exists M such the principal solution at �M has no backward focal
point in ð�1;�MÞ. Nonoscillation of (1) means nonoscillation both at þ1 and �1.

System (1) is said to be controllable near þ1 if to every M 2 N there exists N > M;N 2 N, such that for the principal solu-

tion Z½M� ¼ X ½M�

U½M�

� �
at k ¼ M the matrix X½M�N is invertible. Similarly, system (1) is controllable near �1 if to every M 2 N there
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