
An effectiveness-based adaptive cache replacement policy

Geng Tian ⇑, Michael Liebelt
School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, South Australia, Australia

a r t i c l e i n f o

Article history:
Available online 6 December 2013

Keywords:
Cache memory
Configurable cache
Performance
Thrashing
Scan resistance
Micro architecture

a b s t r a c t

Belady’s optimal cache replacement policy is an algorithm to work out the theoretical minimum number
of cache misses, but the rationale behind it was too simple. In this work, we revisit the essential function
of caches to develop an underlying analytical model. We argue that frequency and recency are the only
two affordable attributes of cache history that can be leveraged to predict a good replacement. Based on
those two properties, we propose a novel replacement policy, the Effectiveness-Based Replacement pol-
icy (EBR) and a refinement, Dynamic EBR (D-EBR), which combines measures of recency and frequency to
form a rank sequence inside each set and evict blocks with lowest rank. To evaluate our design, we sim-
ulated all 30 applications from SPEC CPU2006 for uni-core system and a set of combinations for 4-core
systems, for different cache sizes. The results show that EBR achieves an average miss rate reduction
of 12.4%. With the help of D-EBR, we can tune the weight ratio between ‘frequency’ and ‘recency’ dynam-
ically. D-EBR can nearly double the miss reduction achieved by EBR alone. In terms of hardware overhead,
EBR requires half the hardware overhead of real LRU and even compared with Pseudo LRU the overhead is
modest.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of a cache is to temporarily hold data blocks ac-
cessed by the processor, keeping them close to the processor in
case they are going to be used again in the future. In today’s
multi-core systems the latency of accesses to the last level cache
(LLC) can reach as many as hundreds of cycles. Any hit in the LLC
means a reduction in the overall running time since an extremely
long main memory fetch latency is eliminated. Unfortunately this
benefit is not achieved for free. Practical limitations on the area
and power consumption of a cache constrain its size. This means
the cache will be fully occupied within a short period of time
and after that, if a new data block must be accommodated, a
replacement decision has to be made. Many replacement algo-
rithms have been proposed over time, but when we apply the
power, area and hardware overhead constraints when designing
a CPU, not a lot of them are practical. In this paper we will re-
examine the essential function of a cache and find the underlying
analytical model of cache replacement. Based on that model we
will propose a new replacement policy, Effectiveness-Based
Replacement policy (EBR).

The purpose of a good replacement policy is to make sure that
the data stored in the cache can be re-used as many times as
possible. We propose a new definition of an optimal cache

replacement policy which can be used to explain many widely ac-
cepted replacement policies. Replacement policies involving PC in-
dexes or past access intervals have been investigated by many
researchers, but many of them dramatically complicate the struc-
ture of the cache. We propose to use the readily-obtainable mea-
sures of recency and frequency to develop a replacement scheme
that is not significantly more complicated than the industry-pre-
ferred pseudo LRU. The ideal Least Recently Used (LRU) policy uses
recency information only, while Least Frequently Used (LFU) uses
frequency only. However in the absence of the other information,
LRU and LFU can produce problems, such as thrashing and scan in
the case of LRU and ageing in the case of LFU [1]. There has been
previous research which proposed to integrate LFU with LRU [2–
7], but these works either aim at the page level with unaffordable
hardware complexity for caches or use set duelling to select be-
tween LRU and LFU, which is not an efficient method of
combination.

EBR combines the measures of recency and frequency to form a
rank sequence inside each set and, upon each miss, the block with
lowest rank is evicted. EBR assumes that the weight of recency
should be much higher than frequency. It divides the recency stack
into several subgroups, each representing a recency level. Inside
each group, frequency determines the ranking. However, there
are cases when the assumption that recency is more important
than frequency does not work effectively and to get best perfor-
mance we should rely more on LFU than LRU. Dynamic-EBR uses
a modified set duelling [8] technique to find the most suitable

0141-9331/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2013.11.011

⇑ Corresponding author.
E-mail addresses: tian@eleceng.adelaide.edu.au (G. Tian), michael.liebelt@

adelaide.edu.au (M. Liebelt).

Microprocessors and Microsystems 38 (2014) 98–111

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2013.11.011&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2013.11.011
mailto:tian@eleceng.adelaide.edu.au
mailto:michael.liebelt@adelaide.edu.au
mailto:michael.liebelt@adelaide.edu.au
http://dx.doi.org/10.1016/j.micpro.2013.11.011
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


way to divide recency subgroups. With the help of D-EBR, we can
double the improvement made by EBR alone.

The rest of this paper is organised as follows. In Section 2 we
discuss the objective of cache replacement and propose a new def-
inition of optimal replacement. Section 3 discusses the deficiencies
of commonly used replacement policies and their causes. Sections
4 and 7 introduce EBR and D-EBR, respectively. Sections 5, 6 and 8
present the results of our simulations and Section 9 focuses on the
complexity sensitivity of D-EBR. Section 10 talks about the hard-
ware overhead, Section 11 discusses related works and finally
Section 12 previews future work.

2. Re-definition of cache optimal replacement

The essential function of a cache is to hold blocks that will be
accessed again in the future. If a block is not going to be re-refer-
enced in the future then there is no purpose served in keeping it
in the cache. To do so wastes power and the potential chance for
other blocks to achieve hits during that period of time.

Let Riðt; t þ DtÞ denote the number of re-references to block i
if it can reside in cache during the future period between cur-
rent time t and t þ Dt. Assume for the moment that there is
only one way in the cache, and that at time T1, two blocks A
and B are candidates for eviction, whose future re-reference
pattern follows Fig. 1a. One of these is a new block and the
other is the block already present. In the future, RAðT1; T10Þ
would be 4 and RBðT1; T10Þ would be 5. In other words, if we
leave A in the cache in this example we will achieve 4 hits
and 5 misses whereas if we retain B, we will achieve 5 hits
and 4 misses.

To evaluate the above situation more precisely, we introduce
a new metric. We define Effectiveness Eiðt; t þ DtÞ of a block i as
the rate of re-use of the block over future time period Dt if this
block was allocated in the cache. Eiðt; t þ DtÞ ¼ Riðt;tþDtÞ

Dt . The higher
the Effectiveness of a block, the more benefit we would gain if
we let this block reside in cache during that period of time. If
we always allocate blocks with maximum E to the cache, we will
maximise the number of hits. Eq. (1) gives the total Effective-
ness, n, of all of the on-chip blocks during the period of
execution.

n ¼
Xlast�1

j¼0

Eiðtj; tjþ1Þ where t0 ¼ start and tlast ¼ end ð1Þ

A maximised n will guarantee a maximised number of cache hits
and minimum number of cache misses, so any policy that maximise
n can be considered optimal. Hence we now propose a new defini-
tion for the ultimate goal of a cache replacement policy:

Definition 1. The Optimal Replacement Policy is the one that
maximises n.

Considering that the chance to rearrange in-cache block combi-
nations only occurs when there is a replacement, and a replace-
ment only occurs when a miss has occurred, it will be too late to
include the effect of the miss on deciding the following replace-
ment. (We do not consider early replacement here, since bringing
the block into the cache at a time before it is to be used is actually
a waste of efficiency through occupying the cache earlier without
any contribution to performance.) Hence, we propose the following
replacement strategy: upon a replacement, those blocks that have
the largest Effectiveness during the time interval, from the mo-
ment when the current replacement ends to the moment when
the next replacement ends, can remain in the cache. We denote
the time interval from the moment when the current replacement

finishes until the moment when the next replacement finishes as a
time slice. We can then define the optimal Effectiveness based
replacement strategy as:

Definition 2. Optimal effectiveness based replacement strategy:
Upon a replacement, retain those blocks that will maximise
Effectiveness in the following time slice.

0

1

2

3

4

5

6

7

Time

BlockA
BlockB

BlockA
BlockB

R
eu

se
 C

ou
nt

 
R

eu
se

 C
ou

nt
 

R
eu

se
 C

ou
nt

 

T1
B

T2
A

T3
A

T4
A

T5
B

T6
B

T7
B

T8
B

T9
A

0

1

2

3

4

5

6

7

Miss
caused
by

Miss
caused
by

Miss
caused
by

Miss
caused
by

Miss
caused
by

Miss
caused
by

Miss
caused
by

Time

BlockB

T1
B

T2
A

T3
A

T4
A

T5
B

T6
B

T7
B

T8
B

T9
A

0

1

2

3

4

5

6

7

Time
T1
B

T2
A

T3
A

T4
A

T5
B

T6
B

T7
B

T8
B

T9
A

Fig. 1. Example 1 to illustrate block Effectiveness.

G. Tian, M. Liebelt / Microprocessors and Microsystems 38 (2014) 98–111 99



Download	English	Version:

https://daneshyari.com/en/article/462781

Download	Persian	Version:

https://daneshyari.com/article/462781

Daneshyari.com

https://daneshyari.com/en/article/462781
https://daneshyari.com/article/462781
https://daneshyari.com/

