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a b s t r a c t

An algorithm based on Sherman–Morrison–Woodbury formula to solve numerically the
Stokes problem is described. The algorithm allows to obtain the solution for viscosity con-
trasts up to ten orders of magnitude, moreover solution speed does not depend on viscosity
contrast. Tests of accuracy of the algorithm are provided.
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1. Introduction

The problem of high viscosity contrasts is one of the computationally challenging problems in geodynamic modeling as
the fluid viscosity changes abruptly at the interface between two domains of different viscosity, and the use of standard
numerical techniques leads sometimes to significant numerical errors at and in the vicinity of the interfaces (see, e.g., [1–
3]). The problem of numerical handling of density and viscosity contrasts in geodynamic modeling were intensively studied
in 80–90s of the XXth century by Christensen [4,5], Lenardic and Kaula [6], Naimark and Ismail-Zadeh [7,8], and Naimark
et al. [9].

In simulation of two phase flows viscosity jumps are often supported on rather small sets [10]. In mathematical physics
and PDE theory perturbations supported on a small set are well known under names point perturbations, finite rank pertur-
bations and so on; first publications on the subject dates back to 1930-s, see e.g. [11]. The modern formulation of finite rank
perturbations is based on the Krein operator extension theory, boundary triples and similar techniques, and allows to quite
easily calculate resolvent for perturbations of partial-differential operator supported on curves, surfaces and fractals (see,
e.g., [12–14] and references therein). By authors opinion inclusion of the Stokes operator into the above mentioned frame-
work can be very fruitful, but this question will be discussed somewhere else. Few first steps in this direction were made for
2D Stokes equations with constant viscosity (see [15–17]).

In numerical computations Krein formula has its analog called Sherman–Morrison–Woodbury formula, which allows to
compute inverse of a small rank perturbation to a matrix [18–21]. We propose to apply the formula to the operator for Stokes
and continuity equations decomposed to two addenda: one can be inverted fast numerically using constant viscosity solver
and the other is of rank proportional to viscosity jump support. The Woodbury formula allows to obtain explicit solution for
variable viscosity problem, however the solution is cumbersome even for small rank perturbations. In the article we propose
algorithm that can be used to obtain the solution numerically. The described method is advantageous in terms of computa-
tion speed, which does not depend on scale of viscosity jumps.
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2. Physical problem

The flow of geomaterials over geological timescales is calculated by solving the momentum equation neglecting inertial
terms (Stokes equations) [22,23]

@rij

@xj
¼ �qgi: ð1Þ

The Stokes equations for the incompressible viscous fluid describe the balance between the external body forces and viscous
stresses. The viscous force is formulated as the gradient of the stress tensor r and the body force is written as the product of
the fluid density q and the gravitational acceleration vector g. Moreover, in the absence of melting and phase transitions,
geodynamic flows are considered as incompressible. Incompressibility is enforced by coupling the aforementioned equations
with the continuity equation

@v i

@xi
¼ 0; ð2Þ

where v is the velocity vector and xi is a spatial coordinate. Eqs. (1) and (2) are valid over the model domain which we denote
by X. The developed below method imposes no restriction on dimension of space Rd containing X; however for the sake of
simplicity below we focus only on two dimensional case.

To close the system (2), the equations for the conservation of momentum and mass are supplemented with two boundary
conditions. Decomposing the boundary of X into two non-overlapping regions, denoted by @XN and @XD, the boundary con-
ditions are written as

Xd

j¼1

rijnj ¼ ai; x 2 @XN ; i ¼ 1; . . . ; d ð3Þ

and

v ¼ b; x 2 @XD: ð4Þ

Here n is the outward point normal to the boundary of X;a is an applied traction and b is a prescribed velocity.
The mechanical behavior of the material is defined by a constitutive relationship. We relate the stress tensor r to the

strain rate tensor �, using a linear, isotropic viscous rheology given by

rij ¼ �pdij þ 2g _�ij; ð5Þ

where d is the Kronecker delta, p is the pressure, g is the viscosity and the strain rate is given by

_�ij ¼
1
2
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@xi

� �
: ð6Þ

Prior to any discretization, the equations above are nondimensionalized by means of dynamic scaling. This scaling is
achieved by first defining a set of characteristic units such as a characteristic length (e.g., domain size), a characteristic time
(e.g., inverse background strain rate), a characteristic viscosity (e.g., minimum viscosity in the domain) and secondly deriving
all the related characteristic units (mass, stress, force. . .). We employ characteristic units that are equal to 1. The results are
not scaled back to dimensional units and therefore the velocity errors and pressure are dimensionless.

3. Discretization

We solve Eqs. (1) and (2) for the primitive variables v i and p. The governing equations can be written as follows

Xd

j¼1

@

@xj
g

@v i

@xj
þ @v j

@xi

� �� �
� @p
@xi
¼ �qgi; i ¼ 1; . . . ;d: ð7Þ

Xd

i¼1

@v i

@xi
¼ 0: ð8Þ

We use finite-difference discretization on non-staggered grid:
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