
A note on the generalization of parameterized inexact Uzawa
method for singular saddle point problems

Yuan Chen, Naimin Zhang ⇑,1

School of Mathematics and Information Science, Wenzhou University, Wenzhou 325035, People’s Republic of China

a r t i c l e i n f o

Keywords:
Singular linear systems
Saddle point problems
Parameterized inexact Uzawa method
Semi-convergence

a b s t r a c t

Recently, Zhang and Wang studied the generalized parameterized inexact Uzawa methods
(GPIU) for solving singular saddle point problems (Zhang and Wang, 2013 [22]). In this
note, we continue to discuss the semi-convergence of GPIU for solving singular saddle
point problems, and weaken some semi-convergent conditions.
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1. Introduction

We consider the iterative solution of a linear system with 2� 2 block structure:

AX �
A B

�BT 0

� �
x

y

� �
¼

f

g

� �
ð1Þ

where A 2 Rm�m is a symmetric positive definite matrix, B 2 Rm�n a rank-deficient matrix, and f 2 Rm and g 2 Rn are given vec-
tors, with m P n. We use BT to denote the transpose of the matrix B. Linear system (1) is often called a saddle point problem,
which arises in many application areas, such as computational fluid dynamics, mixed finite element approximation of elliptic
partial differential equations, optimization, optimal control, constrained least-squares problems, electronic networks, com-
puter graphics and others; see, e.g., [1,3,10,11,14,15,18,21] and references therein. When the coefficient matrix of linear sys-
tem (1) is nonsingular, which requires B to be of full rank, a number of iterative methods have been proposed in the
literature. For example, Uzawa-type methods which include parameterized Uzawa (PU) method and parameterized inexact
Uzawa (PIU) method [6,7,13,16], Hermitian and skew-Hermitian splitting (HSS) methods [3,4], and a lot of preconditioned
Krylov subspace iterative methods.

In this note, since the matrix B in (1) is rank-deficient, the coefficient matrix of (1) is singular, and (1) is called a singular
saddle point problem. Recently, many techniques have been proposed for solving singular saddle point problems, including
preconditioned minimum residual (PMINRES) method [17], preconditioned conjugate gradient (PCG) method [21]. For con-
jugate gradient type methods, here we also cite Restrictively preconditioned conjugate gradient (RPCG) methods [5,8]. Since
Bai et al. proposed the PU and PIU methods [6,7], some authors developed these methods and used them to solve singular
saddle point problems. Zheng et al. [24] applied the PU method to solve singular saddle point problems. Chen and Jiang [13]
extended these methods and proposed a class of generalized inexact parameterized Uzawa methods. Ma and Zhang [20]
studied block-diagonally preconditioned parameterized inexact Uzawa methods for singular saddle point problem.
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Recently, Zhang and Wang [22] further studied the generalized parameterized inexact Uzawa (GPIU) methods for solving
singular saddle point problems, and gave the corresponding semi-convergence analysis. In this note, we continue to discuss
the GPIU methods for solving singular saddle point problems, and weaken some of the semi-convergence conditions in [22].

The rest of this note is organized as follow. In Section 2, we present the GPIU method for solving the singular saddle point
problem (1), and give the corresponding semi-convergence analysis.

2. The semi-convergence of the GPIU method

For solving the singular saddle point problem (1), we make the following matrix splitting

A ¼
A B

�BT 0

� �
¼M�N

where

M¼
P 0

�BT þ Q1 Q 2

� �
; N ¼

P � A �B

Q 1 Q 2

� �

P 2 Rm�m and Q 2 2 Rn�n are prescribed symmetric positive definite matrices, and Q 1 2 Rn�m is an arbitrary matrix. Then we
present the following generalized parameterized inexact Uzawa (GPIU) iteration method [22] for solving the singular saddle
point problem (1):
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or in block form,

xkþ1 ¼ xk þ P�1ðf � Axk � BykÞ
ykþ1 ¼ yk þ Q�1

2 ðB
T xkþ1 þ gÞ � Q�1

2 Q 1ðxkþ1 � xkÞ

(
ð3Þ

and the iteration matrix T is:

T ¼
P 0

�BT þ Q1 Q 2

� ��1 P � A �B
Q 1 Q2

� �
¼ I �M�1A ð4Þ

As A is singular, then T has eigenvalue 1, and the spectral radius of the iteration matrix T , i.e., qðT Þ cannot be small than 1.
For the iteration matrix T , we introduce its pseudo-spectral radius tðT Þ,

tðT Þ ¼maxfjkj : k 2 rðT Þ; k – 1g

where rðT Þ is the set of eigenvalues of T .
For a matrix B 2 Rn�n, the smallest nonnegative integer k such that rankðBkÞ ¼ rankðBkþ1Þ is called the index of B, and we

denote it by k ¼ indexðBÞ. In fact, indexðBÞ is the size of the largest Jordan block corresponding to the zero eigenvalue of B.
We now discuss the conditions of semi-convergence for solving singular linear systems, which have been studied by sev-

eral authors (cf. [2,12,23]).

Lemma 2.1 [9]. The iterative method (2) is semi-convergent, if and only if indexðI � T Þ ¼ 1 and tðT Þ < 1.

Lemma 2.2 [22]. Let A; P and Q 2 be symmetric positive definite, and B be of column rank-deficient, Q1 is an arbitrary matrix.
Suppose that k is an eigenvalue of the iteration matrix T and ðuT ;vTÞT 2 Cmþn is the corresponding eigenvector. Then k ¼ 1 if
and only if u ¼ 0.

Lemma 2.3 [22]. Let A; P and Q 2 be symmetric positive definite, B be of rank-deficient and Q1 is an arbitrary matrix. Suppose that
k – 1 is an eigenvalue of the iteration matrix T and ðuT ;vTÞT 2 Cmþn is the corresponding eigenvector. Then k satisfies the following
quadratic equation

k2 þ bþ c� 2a� s
a

kþ aþ s� b
a

¼ 0 ð5Þ

where

a ¼ u�Pu
u�u

> 0; b ¼ u�Au
u�u

> 0; c ¼ u�BQ�1
2 BT u

u�u
P 0; s ¼ u�BQ�1

2 Q 1u
u�u
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