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a b s t r a c t

In this paper, the variable separation solutions of the coupled integrable dispersionless
equations are derived. These solutions include two arbitrary functions and they are more
general than the results presented before. Furthermore, some coherent structures of the
physical quantity including decaying bell solitary, single dromion, soliton-type breather,
peakon-type breather and loop-type breather are constructed.
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1. Introduction

During the past several years, the study of coupled dispersionless integrable systems has been an active field of
investigations in theoretical and mathematical physics [1–9]. As a special case of a more general set of integrable equations,
Konno and Oono presented a new coupled integrable dispersionless (CID) equations

qt þ 2rrx ¼ 0;
rxt � 2qr ¼ 0;

�
ð1Þ

where q; r are both functions of x; t and the subscripts denote derivatives. They obtained the one-soliton solution for dark-
type and bright-type for this system via inverse scattering method and proposed a generalized inverse scheme from the
group theoretical point of view [10,11]. These coupled integrable dispersionless equations describe the current-fed string
within an external magnetic field. The detailed physical application of the system was stated in [12]. Later, Kotlyarov proved
that this integrable model was gauge equivalent to the sine–Gordon and Pohlmeyer–Lund–Regge model [13]. Again, Konno
and Kakuhata obtained the soliton solutions for growing, decaying and stationary solitons [14]. Interactions among the sol-
itary waves and their properties were also considered by them. Recently, by virtue of the multi-linear variable separation
approach, Shen derived variable separate solutions of the system [15] and Zhang et al. presented a common formula with
some arbitrary functions to describe suitable physical quantities for some ð1þ 1Þ-dimensional models such as the coupled
integrable dispersionless equations [16]. Furthermore, we modified the bilinear equations obtained by Alagesan [17] and
conjectured their N-soliton solutions [18]. In another paper [19], Alagesan derived one soliton solution of the equations using
the corresponding linear eigenvalue problem.

In this paper, we obtain variable separate solutions to the system by means of singular manifold method [20–25] and a
direct ansatz technique. These solutions include two arbitrary functions and they are more general than the results
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presented before. The organization of this paper is as follows. In Section 2, the general variable separation solutions for equa-
tions under consideration are obtained by the singular manifold method. In Section 3, some localized coherent structures are
investigated. The last section is devoted to conclusion and discussion.

2. Variable separate solutions to CID equations

Following the method introduced by Weiss, Tabor and Carnevale (WTC), one can easily prove that CID equations pass the
Painlevé test for PDEs and there are enough arbitrary coefficients in the expansions

q ¼ q0ðx; tÞ/�2 þ q1ðx; tÞ/�1 þ q2ðx; tÞ þ q3ðx; tÞ/þ � � �;
r ¼ r0ðx; tÞ/�1 þ r1ðx; tÞ þ r2ðx; tÞ/þ � � �:

(
ð2Þ

Here / ¼ /ðx; tÞ is the non-characteristic singular manifold. According to the singular manifold method, we truncate the
Painlevé expansions at the constant level term as

q ¼ q0ðx; tÞ/�2 þ q1ðx; tÞ/�1 þ Qðx; tÞ;
r ¼ r0ðx; tÞ/�1 þ Rðx; tÞ:

(
ð3Þ

Substituting Eq. (3) into Eq. (1) and arranging the coefficients at each order of /, we have

/0 :
Q t þ 2RRx ¼ 0;
Rxt � 2QR ¼ 0:

�
ð4Þ

/1 :
q1t þ 2r0Rx þ 2 r0xR ¼ 0;
r0xt � 2q1R� 2r0 Q ¼ 0:

�
ð5Þ

/2 :
q0t � q1/t þ 2r0r0x � 2r0 R/x ¼ 0;
r0t/x þ r0x/t þ r0 /xt þ 2q0 Rþ 2q1 r0 ¼ 0:

�
ð6Þ

/3 :
q0/t þ r2

0/x ¼ 0;
q0 � /t/x ¼ 0:

(
ð7Þ

Eq. (4) shows that Qðx; tÞ and Rðx; tÞ solve Eq. (1). Therefore, Eq. (3) constitutes an auto-Bäcklund transformation for CID
equations and can be used to generate new solutions. Eq. (7) implies that q0 ¼ /t/x and r2

0 ¼ �/2
t . Without loss of generality

we take r0 ¼ I/t with I denotes the imaginary unit. Substituting the expressions of q0 and r0 into Eq. (6), the compatibility
condition requires q1 ¼ �/xt and R ¼ � I/tt

2/t
. Based on these results, from Eq. (5) we solve Q ¼ /t/xtt�/tt/xt

2/2
t

. Substituting the

explicit expressions of R and Q into Eq. (4) leads to the unique singular manifold equation (SME)

/2
t /xttt � /t/ttt/xt � 3/tt/t/xtt þ 3/2

tt/xt ¼ 0: ð8Þ

Therefore, if one can solve the above PDE of /ðx; tÞ, then the solutions to original system are easily obtained by the truncation
Eq. (3) as

q ¼ /t/x

/2 � /xt
/ þ

/t/xtt�/tt/xt

2/2
t

;

r ¼ I /t
/ �

/tt
2/t

� �
:

8<
: ð9Þ

This is the key point of singular manifold method. Generally speaking, it is very difficult to solve SME completely and some
assumptions are needed.

Let

/ðx; tÞ ¼ aþ bf ðxÞ þ cgðtÞ þ df ðxÞgðtÞ; ð10Þ

where a; b; c; d are arbitrary constants which cannot equal to zero simultaneously, and f ðxÞ; gðtÞ are two arbitrary functions.
Although the arbitrary constants can be included in the functions f ðxÞ and gðtÞ when they are not equal to zero, just as every
vector in a vector space can be represented as a linear combination of basis vectors, it is more convenient here to take the
singular manifold as a linear combination of the two arbitrary functions. We find that SME is satisfied automatically under
this assumption. It means that the ansatz Eq. (10) makes sense and we get a particular solution which is used as seed solu-
tion in the auto-Bäcklund transformation as follows

Q ¼ /t/xtt�/tt/xt

2/2
t

¼ 0;

R ¼ � I/tt
2/t
¼ � Igtt

2gt
:

8<
: ð11Þ

Furthermore, we also get the general variable separation solutions to original CID equations following Eq. (9) as
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