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a b s t r a c t

In this paper, we study an efficient tridiagonal preconditioner, based on the directional
differentiation, applied to the matrix-free truncated Newton method for unconstrained
optimization. It is proved that this preconditioner is positive definite for many practical
problems. The efficiency of the resulting matrix-free truncated Newton method is
demonstrated by results of extensive numerical experiments.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the unconstrained minimization problem

x� ¼ arg min
x2Rn

FðxÞ;

where function F : DðFÞ � Rn ! R is twice continuously differentiable and n is large. We use the notation

gðxÞ ¼ rFðxÞ; GðxÞ ¼ r2FðxÞ

and the assumption that kGðxÞk 6 G, 8x 2 DðFÞ. Numerical methods for large unconstrained minimization are usually itera-
tive and their iteration step has the form

xkþ1 ¼ xk þ akdk; k 2 N;

where dk is a direction vector and ak is a step-length. In this paper, we will deal with the Newton method, which uses the
quadratic model

Fðxk þ dÞ � Qðxk þ dÞ ¼ FðxkÞ þ gTðxkÞdþ
1
2

dT GðxkÞd; ð1Þ

for direction determination in such a way that

dk ¼ arg min
d2Mk

Qðxk þ dÞ:
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There are two basic possibilities for direction determination: the line-search method, whereMk ¼ Rn, and the trust-region
method, where Mk ¼ fd 2 Rn : kdk 6 Dkg (here Dk > 0 is the trust region radius). Properties of line search and trust region
methods together with comments concerning their implementation are exhaustively introduced in [3,23], so no more details
are given here.

In this paper, we assume that neither matrix Gk ¼ GðxkÞ nor its sparsity pattern are explicitly known. In the latter case,
direct methods based on Gaussian elimination cannot be used, so it is necessary to compute the direction vector iteratively.
There are many various iterative methods making use of the symmetry of the Hessian matrix, see [27]. Some of them, e.g.
[7,8,25] allow us to consider indefinite Hessian matrices. Even if these methods are of theoretical interest and lead to non-
traditional preconditioners, see [10,11], we confine our attention to modifications of the conjugate gradient method [28–30],
which are simple and very efficient (also in the indefinite case). We studied and tested both the line search and the trust
region approaches, but the second approach did not give significantly better results than the first one. Therefore, we restrict
our attention to the line search implementation of the truncated Newton method.

Since matrix GðxÞ is not given explicitly, we use numerical differentiation instead of matrix multiplication. Thus the prod-
uct GðxÞp is replaced by the difference

GðxÞp � gðxþ dpÞ � gðxÞ
d

; ð2Þ

where d ¼ e=kpk and e > 0 is a suitable small number (usually e � ffiffiffiffiffiffi
eM
p

where eM is the machine precision). The resulting
method is called the truncated Newton method. This method has been theoretically studied in many papers, see
[4,5,9,21,24]. The following theorem, which easily follows from the mean value theorem, confirms the choice (2).

Theorem 1. Let function F : Rn ! R be Lipschitz continuous second order derivatives (with the Lipschitz constant L). Let q ¼ GðxÞp
and

~q ¼ gðxþ dpÞ � gðxÞ
d

; d ¼ e
kpk ;

where e > 0 is an arbitrary (usually small) number. Then it holds

k~q� qk 6 1
2
eLkpk:

To make the subsequent investigations clear, we briefly describe the preconditioned conjugate gradient subalgorithm
proposed in [28] where matrix multiplications are replaced by gradient differences (the outer index k is for the sake of sim-
plicity omitted). In this subalgorithm, 0 < x < 1 is a chosen precision (which usually depends on kgk) and m is the maximum
number of the conjugate gradient steps (we have used value m ¼ nþ 3 in our numerical experiments).

Truncated Newton PCG subalgorithm:

d1 ¼ 0; g1 ¼ g; h1 ¼ C�1g1; q1 ¼ gT
1h1; p1 ¼ �h1:

Do i ¼ 1 to m

di ¼ e=kpik; ~qi ¼ ðgðxþ dipiÞ � gðxÞÞ=di; ri ¼ pT
i
~qi:

If ri < ekpik
2 then d ¼ di; stop:

ai ¼ qi=ri; diþ1 ¼ di þ aipi; giþ1 ¼ gi þ ai~qi;

hiþ1 ¼ C�1giþ1; qiþ1 ¼ gT
iþ1hiþ1:

If kgiþ1k 6 xkg1k or i ¼ m then d ¼ di; stop:
bi ¼ qiþ1=qi; piþ1 ¼ �hiþ1 þ bipi:

End do

A disadvantage of the truncated Newton PCG subalgorithm with C ¼ I (unpreconditioned) consists in the fact that it
requires a large number of inner iterations (i.e. a large number of gradient evaluations) if matrix G ¼ GðxÞ is ill-conditioned.
Thus a suitable preconditioner should be used. Unfortunately, the sparsity pattern of G is not known, so the standard
preconditioning methods requiring the knowledge of the sparsity pattern (e.g. methods based on the incomplete Choleski
decomposition) cannot be chosen.

There are various ways for building positive definite preconditioners, which can be utilized in the truncated Newton PCG
subalgorithm:

� Preconditioners based on the limited memory BFGS updates. This very straightforward approach is studied in [13,20].
� Preconditioners determined by the Lanczos method equivalent to the conjugate gradient method. This approach is stud-

ied in [10,11,21].
� Band preconditioners obtained by the standard BFGS method equivalent to the preconditioned conjugate gradient

method. This approach is described in [22], where it is used for building of diagonal preconditioners. More general band
preconditioners of this type are studied in [17].
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