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1. Introduction

Let y be a Dirichlet character with conductor d € N with d = 1 (mod 2). As is well known, the generalized higher-order
Euler polynomials are defined by the generating function to be
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When x =0, E E“ ,(0) are called the generalized Euler numbers attached to y of order r(¢ N).

Forge C w1th q] < 1, the g-number is defined by [x], 11%‘2

Note that lim, .[x], = x. In [7], Kim considered g- extension of generalized higher-order Euler polynomials attached to ¥
as follows:
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For s € C and x € R with x # 0, -1, -2, ..., Kim defined Dirichlet-type multiple g—I-funtion which is given by
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Applying the Laurent series and Cauchy residue theorem in (1.2) and (1.3), we get

lor(—,X[y) = Ey) ,(X), where n e Z,. (1.4)
When x =0, E,([ = Ef{”(O) are called the generalized g-Euler numbers attached to y of order r. From (1.2), we note that
n
ED), o) = ,Z< | ) = (g, + ) (1.5)
with the usual convention about replacing (Egg ) by E”q, (see [1-13]).

In this paper, we investigate properties of symmetry in two variables related to multiple g—I-function which interpolates
generalized higher-order g-Euler polynomials attached to y at negative integers. From our investigation, we derive identities
of symmetry in two variables related to generalized higher-order g-Euler polynomials attached to y. Recently, several
authors have studied g-extensions of Euler polynomials due to Kim (see [1-3,9-13]).

2. Symmetry of g-power sum and the generalized g-Euler polynomials

For a,b € N with a=1 (mod 2) and b = 1 (mod 2), we observe that
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From (2.1), we have
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By the same method as (2.2), we get
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Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. For a,b € N witha=1 (mod 2)2 and b =1 (mod 2), we have
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From (1.4) and Theorem 2.1, we obtain the following theorem.

Theorem 2.2. Forn > 0 and a,b € N with a=1 (mod 2) and b =1 (mod 2), we have
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By (1.5), we easily get
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