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a b s t r a c t

In this paper, we are concerned with the eigenvalue problem of a class of singular p-Lapla-
cian fractional differential equations involving the Riemann–Stieltjes integral boundary
condition. The conditions for the existence of at least one positive solution is established
together with the estimates of the lower and upper bounds of the solution at any instant
of time. Our results are derived based on the method of upper and lower solutions and
the Schauder fixed point theorem.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the eigenvalue problem for a class of singular p-Laplacian fractional differential equations (PFDE for
short) involving the Riemann–Stieltjes integral boundary condition
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ðtÞ ¼ kf ðt; xðtÞÞ; t 2 ð0;1Þ;

xð0Þ ¼ 0; Da
t xð0Þ ¼ 0; xð1Þ ¼

R 1
0 xðsÞdAðsÞ;

8<
: ð1:1Þ

where Db
t and Da

t are the standard Riemann–Liouville derivatives with 1 < a 6 2; 0 < b 6 1. A is a function of bounded var-

iation and
R 1

0 xðsÞdAðsÞ denotes the Riemann–Stieltjes integral of x with respect to A, the p-Laplacian operator up is defined as

upðsÞ ¼ jsj
p�2s; p > 1, f ðt; xÞ : ð0;1Þ � ð0;þ1Þ ! ½0;þ1Þ is continuous and may be singular at t ¼ 0;1 and x ¼ 0.

Integral and derivative operators of fractional order can describe the characteristics exhibited in many complex processes
and systems having long-memory in time, and for this reason many classical integer-order models for complex systems are
being substituted by fractional order models. Fractional calculus also provides an excellent tool to describe the hereditary
properties of materials and processes, particularly in viscoelasticity, electrochemistry and porous media (see [1–5]). Many
successful new applications of fractional calculus in various fields have also been reported recently. For example, Nieto
and Pimentel [18] extended a second-order thermostat model to the fractional model, Ding and Jiang [19] used waveform
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relaxation methods to study some fractional functional differential equations models. For the basic theories of fractional cal-
culus and some recent work in application, the reader is referred to Refs. [17,23–34].

Much of the work on fractional calculus deals with boundary value problems [6–9,20]. In particular, Ahmad and Nieto
[20] considered a nonlinear Dirichlet boundary value problem of sequential fractional integro-differential equations in the
sense of the Caputo fractional derivative, and the existence results are established by means of some standard tools of fixed
point theory. On the other hand, some developments on the topic involving the p-Laplacian operator and complex boundary
value conditions have been reported [10–13,21]. In [22], Li and Lin considered a Hadamard fractional boundary value prob-
lem with a p-Laplacian operator as below:
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ðtÞ ¼ f ðt; xðtÞÞ; 1 < t < e;

xð1Þ ¼ x0ð1Þ ¼ x0ðeÞ ¼ 0; Da
t xð1Þ ¼ Da

t xðeÞ ¼ 0;

(

where 2 < a 6 3; 1 < b � 2;upðsÞ ¼ jsj
p�2s; p > 1, and f : ½1; e� � ½0;þ1Þ ! ½0;þ1Þ is a positive continuous function. By

using the Leray–Schauder type alternative and the Guo–Krasnoselskii fixed point theorem, the existence and the uniqueness
of the positive solutions were established.

The aim of this paper is to deals with the eigenvalue problem for the PFDE involving the Riemann–Stieltjes integral
boundary condition, which allows the boundary conditions to be quite general, by using the upper and lower solutions
and the Schauder fixed point theorem, so as to determine the interval of eigenvalue for the existence of positive solutions.

2. Preliminaries and lemmas

Denote by C½0;1� the space of all continuous functions on [0,1] with the usual norm jjxjj ¼max06t61jxðtÞj. Indeed, C½0;1� is
a Banach space with a partial order, namely for x; y 2 C½0;1�; x 6 y() xðtÞ 6 yðtÞ, for t 2 ½0;1�.

Now consider the linear fractional differential equation

Da
t xðtÞ þ hðtÞ ¼ 0; t 2 ð0;1Þ;

xð0Þ ¼ 0; xð1Þ ¼
R 1

0 xðsÞdAðsÞ:

(
ð2:1Þ

Lemma 2.1 [14]. Given hðtÞ 2 L1½0;1�, the problem

Da
t xðtÞ þ hðtÞ ¼ 0; 0 < t < 1;

xð0Þ ¼ 0; xð1Þ ¼ 0

�
ð2:2Þ

has the unique solution

xðtÞ ¼
Z 1

0
Gðt; sÞhðsÞds; ð2:3Þ

where Gðt; sÞ is the Green function of (2.2) and is given by

Gðt; sÞ ¼ 1
CðaÞ

½tð1� sÞ�a�1
; 0 6 t 6 s 6 1;

½tð1� sÞ�a�1 � ðt � sÞa�1
; 0 6 s 6 t 6 1:

(
ð2:4Þ

Consider the problem

Da
t xðtÞ ¼ 0; 0 < t < 1;

xð0Þ ¼ 0; xð1Þ ¼ 1;

�
ð2:5Þ

by the property of the Riemann–Liouville fractional integral and derivative operators, the unique solution of the problem
(2.5) is ta�1. Defining GAðsÞ ¼

R 1
0 Gðt; sÞdAðtÞ, as in [15,16], we can get that the Green function for the nonlocal FDE (2.1) is

given by

Jðt; sÞ ¼ ta�1

1� C
GAðsÞ þ Gðt; sÞ; C ¼

Z 1

0
ta�1dAðtÞ: ð2:6Þ

Lemma 2.2 [16]. Let 0 6 C < 1 and GAðsÞ � 0 for s 2 ½0;1�, then the Green function defined by (2.6) satisfies:

(1) Jðt; sÞ > 0; for all t; s 2 ð0;1Þ.
(2) There exist two constants c�; c� such that

c�ta�1GAðsÞ 6 Jðt; sÞ 6 c�ta�1
6 c�; t; s 2 ½0;1�; ð2:7Þ
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